In this work secondary ion mass spectrometry (SIMS), variable angle spectroscopy ellipsometry (VASE) and atomic force microscopy (AFM) are used to investigate the structure, composition and morphology of multilayer SRON films. Three/four SRON sequential layers were deposited on silicon wafers by PECVD and silicon, nitrogen and oxygen content was varied by changing the N2O/SiH4 ratio. The total thickness of the resulting SRON stack is about 50nm. SIMS analyses of NCs+, OCs+, SiCs+, in MCs+ methodology are performed by a Cameca SC-ultra instrument. Depth profiles are obtained at 500eV of primary beam impact energy with sample rotation. An approximate method to obtain silicon concentration is used. Total layer thickness are obtained from both SIMS and VASE measurements. In addition, we compare the thickness of the single layers obtained from VASE with the SIMS depth profiles. A detailed analysis of films morphology is obtained by AFM. The SRON stack is sputtered by SIMS until a certain layer is exposed, which is then analyzed by AFM. The sputtered layers are then etched in HF solution to better resolve the exposed nano-crystals.

Multilayer silicon rich oxy-nitride films characterization by SIMS, VASE and AFM

Barozzi, Mario;Vanzetti, Lia Emanuela;Iacob, Erica;Bersani, Massimo;Pucker, Georg;Ghulinyan, Mher;Bellutti, Pierluigi
2008

Abstract

In this work secondary ion mass spectrometry (SIMS), variable angle spectroscopy ellipsometry (VASE) and atomic force microscopy (AFM) are used to investigate the structure, composition and morphology of multilayer SRON films. Three/four SRON sequential layers were deposited on silicon wafers by PECVD and silicon, nitrogen and oxygen content was varied by changing the N2O/SiH4 ratio. The total thickness of the resulting SRON stack is about 50nm. SIMS analyses of NCs+, OCs+, SiCs+, in MCs+ methodology are performed by a Cameca SC-ultra instrument. Depth profiles are obtained at 500eV of primary beam impact energy with sample rotation. An approximate method to obtain silicon concentration is used. Total layer thickness are obtained from both SIMS and VASE measurements. In addition, we compare the thickness of the single layers obtained from VASE with the SIMS depth profiles. A detailed analysis of films morphology is obtained by AFM. The SRON stack is sputtered by SIMS until a certain layer is exposed, which is then analyzed by AFM. The sputtered layers are then etched in HF solution to better resolve the exposed nano-crystals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/4204
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact