We introduce the CDRP (Concatenated Diagnostic-Relapse Prognostic) architecture for multi-task deep learning that incorporates a clinical algorithm, e.g., a risk stratification schema to improve prognostic profiling. We present the first application to survival prediction in High-Risk (HR) Neuroblastoma from transcriptomics data, a task that studies from the MAQC consortium have shown to remain the hardest among multiple diagnostic and prognostic endpoints predictable from the same dataset. To obtain a more accurate risk stratification needed for appropriate treatment strategies, CDRP combines a first component (CDRP-A) synthesizing a diagnostic task and a second component (CDRP-N) dedicated to one or more prognostic tasks. The approach leverages the advent of semi-supervised deep learning structures that can flexibly integrate multimodal data or internally create multiple processing paths. CDRP-A is an autoencoder trained on gene expression on the HR/non-HR risk stratification by the Children's Oncology Group, obtaining a 64-node representation in the bottleneck layer. CDRP-N is a multi-task classifier for two prognostic endpoints, i.e., Event-Free Survival (EFS) and Overall Survival (OS). CDRP-A provides the HR embedding input to the CDRP-N shared layer, from which two branches depart to model EFS and OS, respectively. To control for selection bias, CDRP is trained and evaluated using a Data Analysis Protocol (DAP) developed within the MAQC initiative. CDRP was applied on Illumina RNA-Seq of 498 Neuroblastoma patients (HR: 176) from the SEQC study (12,464 Entrez genes) and on Affymetrix Human Exon Array expression profiles (17,450 genes) of 247 primary diagnostic Neuroblastoma of the TARGET NBL cohort. On the SEQC HR patients, CDRP achieves Matthews Correlation Coefficient (MCC) 0.38 for EFS and MCC = 0.19 for OS in external validation, improving over published SEQC models. We show that a CDRP-N embedding is indeed parametrically associated to increasing severity and the embedding can be used to better stratify patients' survival.

Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma

Maggio, Valerio;Chierici, Marco;Jurman, Giuseppe;Furlanello, Cesare
2018-01-01

Abstract

We introduce the CDRP (Concatenated Diagnostic-Relapse Prognostic) architecture for multi-task deep learning that incorporates a clinical algorithm, e.g., a risk stratification schema to improve prognostic profiling. We present the first application to survival prediction in High-Risk (HR) Neuroblastoma from transcriptomics data, a task that studies from the MAQC consortium have shown to remain the hardest among multiple diagnostic and prognostic endpoints predictable from the same dataset. To obtain a more accurate risk stratification needed for appropriate treatment strategies, CDRP combines a first component (CDRP-A) synthesizing a diagnostic task and a second component (CDRP-N) dedicated to one or more prognostic tasks. The approach leverages the advent of semi-supervised deep learning structures that can flexibly integrate multimodal data or internally create multiple processing paths. CDRP-A is an autoencoder trained on gene expression on the HR/non-HR risk stratification by the Children's Oncology Group, obtaining a 64-node representation in the bottleneck layer. CDRP-N is a multi-task classifier for two prognostic endpoints, i.e., Event-Free Survival (EFS) and Overall Survival (OS). CDRP-A provides the HR embedding input to the CDRP-N shared layer, from which two branches depart to model EFS and OS, respectively. To control for selection bias, CDRP is trained and evaluated using a Data Analysis Protocol (DAP) developed within the MAQC initiative. CDRP was applied on Illumina RNA-Seq of 498 Neuroblastoma patients (HR: 176) from the SEQC study (12,464 Entrez genes) and on Affymetrix Human Exon Array expression profiles (17,450 genes) of 247 primary diagnostic Neuroblastoma of the TARGET NBL cohort. On the SEQC HR patients, CDRP achieves Matthews Correlation Coefficient (MCC) 0.38 for EFS and MCC = 0.19 for OS in external validation, improving over published SEQC models. We show that a CDRP-N embedding is indeed parametrically associated to increasing severity and the embedding can be used to better stratify patients' survival.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/317423
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
social impact