We investigate the effect of the pre-amorphisation damage on the structural properties, and dopant diffusion behaviour of indium and carbon co-implanted layers in silicon. Ion implantation of indium and carbon in silicon was used to produce co-implanted specimens. Rutherford Backscattering Spectroscopyand SecondaryIon Mass Spectroscopyhave been performed on as-implanted and annealed samples to assess in detail the structural properties of the doped layers and the diffusion behaviour. The results have been compared with data obtained for similar implants performed into crystalline silicon to achieve a deeper understanding of the mechanisms driving the diffusion of the indium in silicon in presence of co-implanted species. In particular a reduction of the indium diffusion and a saturation level for the indium substitutional retained dose were observed.
Diffusion of indium implanted in silicon: the effect of the pre-amorphisation treatment and of the presence of carbon
Gennaro, Salvatore;Barozzi, Mario;Bersani, Massimo;
2005-01-01
Abstract
We investigate the effect of the pre-amorphisation damage on the structural properties, and dopant diffusion behaviour of indium and carbon co-implanted layers in silicon. Ion implantation of indium and carbon in silicon was used to produce co-implanted specimens. Rutherford Backscattering Spectroscopyand SecondaryIon Mass Spectroscopyhave been performed on as-implanted and annealed samples to assess in detail the structural properties of the doped layers and the diffusion behaviour. The results have been compared with data obtained for similar implants performed into crystalline silicon to achieve a deeper understanding of the mechanisms driving the diffusion of the indium in silicon in presence of co-implanted species. In particular a reduction of the indium diffusion and a saturation level for the indium substitutional retained dose were observed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.