The silicon photomultiplier (SiPM) is one of the most interesting solid-state detectors for very low-level light detection featuring extremely fast timing response. In FBK we manufactured SiPMs with different micro-cell proprieties such as: size, layout and epi-layer thickness. We characterized both statically and dynamically all devices to understand the impact of each parameter on the signal shape and charge. In this paper we report on the impact of the metal layer layout on the signal shape and gain. We will show both experimental results as well as SPICE simulations.
Characterization and simulation of different SiPM structures produced at FBK
Piazza, Alessandro;Boscardin, Maurizio;Melchiorri, Mirko;Piemonte, Claudio;Tarolli, Alessandro;Zorzi, Nicola
2010-01-01
Abstract
The silicon photomultiplier (SiPM) is one of the most interesting solid-state detectors for very low-level light detection featuring extremely fast timing response. In FBK we manufactured SiPMs with different micro-cell proprieties such as: size, layout and epi-layer thickness. We characterized both statically and dynamically all devices to understand the impact of each parameter on the signal shape and charge. In this paper we report on the impact of the metal layer layout on the signal shape and gain. We will show both experimental results as well as SPICE simulations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.