Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as Gaussian processes. This paper develops an efficient computational scheme for estimating the average and individual curves from large data sets collected in standardized experiments, i.e. with a fixed sampling schedule. It is shown that the overall scheme exhibits a "client­server'' architecture. The server is in charge of handling and processing the collective data base of past experiments. The clients ask the server for the information needed to reconstruct the individual curve in a single new experiment. This architecture allows the clients to take advantage of the overall data set without violating possible privacy and confidentiality constraints and with negligible computational effort.

Fast algorithms for nonparametric population modeling of large data sets

Chierici, Marco;
2009

Abstract

Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as Gaussian processes. This paper develops an efficient computational scheme for estimating the average and individual curves from large data sets collected in standardized experiments, i.e. with a fixed sampling schedule. It is shown that the overall scheme exhibits a "client­server'' architecture. The server is in charge of handling and processing the collective data base of past experiments. The clients ask the server for the information needed to reconstruct the individual curve in a single new experiment. This architecture allows the clients to take advantage of the overall data set without violating possible privacy and confidentiality constraints and with negligible computational effort.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/75002
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact