There are several TXRF spectrometers commercially available for chemical analysis as well as for wafer surface analysis, but there is up to now no spectrometer for chemical analysis available that allows to measure samples under vacuum conditions. Simply a rough vacuum of 10 2 mbar for the sample environment reduces the background due to scattering from air, thus to improve the detection limits. The absorption of low energy fluorescence radiation from low Z elements is reduced and therefore extends the elemental range to be measured down to Na. Finally evacuation of the chamber removes the Ar K-lines from the spectrum. The new vacuum chamber for TXRF named WOBISTRAX is equipped with a 12-position sample changer, a 10-mm2 silicon drift detector (SDD) with an 8-Am Be entrance window and electrical cooling by Peltier effect, so no LN2 is required. The chamber was designed to be attached to a diffraction tube housing. WOBISTRAX can be operated with a 3 kW long fine focus Mo-X-ray tube and uses a Mo/Si multilayer for monochromatization. The modified software is performing the motion control between sample changer and MCA features. The performance is expressed in terms of detection limits which are 700 fg Rb for Mo Ka excitation with 50 kV, 40 mA excitation conditions, 1000 s livetime. Using a Cr-X-ray tube for excitation of Al the achieved detection limits are 52 pg. So it could be shown that with the same measuring chamber and using an SDD with 8 Am Be window and a Cr-tube for excitation, low Z elements can be also measured with good detection limits

A new total reflection X-ray fluorescence vacuum chamber with sample changer analysis using a silicon drift detector for chemical analysis

Pepponi, Giancarlo;
2004-01-01

Abstract

There are several TXRF spectrometers commercially available for chemical analysis as well as for wafer surface analysis, but there is up to now no spectrometer for chemical analysis available that allows to measure samples under vacuum conditions. Simply a rough vacuum of 10 2 mbar for the sample environment reduces the background due to scattering from air, thus to improve the detection limits. The absorption of low energy fluorescence radiation from low Z elements is reduced and therefore extends the elemental range to be measured down to Na. Finally evacuation of the chamber removes the Ar K-lines from the spectrum. The new vacuum chamber for TXRF named WOBISTRAX is equipped with a 12-position sample changer, a 10-mm2 silicon drift detector (SDD) with an 8-Am Be entrance window and electrical cooling by Peltier effect, so no LN2 is required. The chamber was designed to be attached to a diffraction tube housing. WOBISTRAX can be operated with a 3 kW long fine focus Mo-X-ray tube and uses a Mo/Si multilayer for monochromatization. The modified software is performing the motion control between sample changer and MCA features. The performance is expressed in terms of detection limits which are 700 fg Rb for Mo Ka excitation with 50 kV, 40 mA excitation conditions, 1000 s livetime. Using a Cr-X-ray tube for excitation of Al the achieved detection limits are 52 pg. So it could be shown that with the same measuring chamber and using an SDD with 8 Am Be window and a Cr-tube for excitation, low Z elements can be also measured with good detection limits
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/3843
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact