The formation of highly activated ultra-shallow junctions (USJ) is one of the key requirements for the next generation of CMOS devices. One promising method for achieving this is the use of Ge preamorphising implants (PAI) prior to ultra-low energy B implantation. In future technology nodes, bulk silicon wafers may be supplanted by Silicon-on-Insulator (SOI), and an understanding of the Solid Phase Epitaxial (SPE) regrowth process and its correlation to dopant electrical activation in both bulk silicon and SOI is essential in order to understand the impact of this potential technology change. This kind of understanding will also enable tests of fundamental models for defect evolution and point-defect reactions at silicon/oxide interfaces. In the present work, B is implanted into Ge PAI silicon and SOI wafers with different PAI conditions and B doses, and resulting samples are annealed at various temperatures and times. Glancing-exit Rutherford Backscattering Spectrometry (RBS) is used to monitor the regrowth of the amorphous silicon, and the resulting redistribution and electrical activity of B are monitored by SIMS and Hall measurements. The results confirm the expected enhancement of regrowth velocity by B doping, and show that this velocity is otherwise independent of the substrate type and the Ge implant distribution within the amorphised layer. Hall measurements on isochronally annealed samples show that B deactivates less in SOI material than in bulk silicon, in cases where the Ge PAI end-of-range defects are close to the SOI back interface.

Electrical activation of solid-phase epitaxially regrown ultra-low energy boron implants in Ge preamorphised silicon and SOI

Bersani, Massimo;Giubertoni, Damiano;
2005

Abstract

The formation of highly activated ultra-shallow junctions (USJ) is one of the key requirements for the next generation of CMOS devices. One promising method for achieving this is the use of Ge preamorphising implants (PAI) prior to ultra-low energy B implantation. In future technology nodes, bulk silicon wafers may be supplanted by Silicon-on-Insulator (SOI), and an understanding of the Solid Phase Epitaxial (SPE) regrowth process and its correlation to dopant electrical activation in both bulk silicon and SOI is essential in order to understand the impact of this potential technology change. This kind of understanding will also enable tests of fundamental models for defect evolution and point-defect reactions at silicon/oxide interfaces. In the present work, B is implanted into Ge PAI silicon and SOI wafers with different PAI conditions and B doses, and resulting samples are annealed at various temperatures and times. Glancing-exit Rutherford Backscattering Spectrometry (RBS) is used to monitor the regrowth of the amorphous silicon, and the resulting redistribution and electrical activity of B are monitored by SIMS and Hall measurements. The results confirm the expected enhancement of regrowth velocity by B doping, and show that this velocity is otherwise independent of the substrate type and the Ge implant distribution within the amorphised layer. Hall measurements on isochronally annealed samples show that B deactivates less in SOI material than in bulk silicon, in cases where the Ge PAI end-of-range defects are close to the SOI back interface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/3797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact