Liquid biopsy is expected to become widespread in the coming years thanks to point of care devices, which can include label-free biosensors. The surface functionalization of biosensors is a crucial aspect that influences their overall performance, resulting in the accurate, sensitive, and specific detection of target molecules. Here, the surface of a microring resonator (MRR)-based biosensor was functionalized for the detection of protein biomarkers. Among the several existing functionalization methods, a strategy based on aptamers and mercaptosilanes was selected as the most highly performing approach. All steps of the functionalization protocol were carefully characterized and optimized to obtain a suitable protocol to be transferred to the final biosensor. The functionalization protocol comprised a preliminary plasma treatment aimed at cleaning and activating the surface for the subsequent silanization step. Different plasma treatments as well as different silanes were tested in order to covalently bind aptamers specific to different biomarker targets, i.e., C-reactive protein, SARS-CoV-2 spike protein, and thrombin. Argon plasma and 1% v/v mercaptosilane were found as the most suitable for obtaining a homogeneous layer apt to aptamer conjugation. The aptamer concentration and time for immobilization were optimized, resulting in 1 µM and 3 h, respectively. A final passivation step based on mercaptohexanol was also implemented. The functionalization protocol was then evaluated for the detection of thrombin with a photonic biosensor based on microring resonators. The preliminary results identified the successful recognition of the correct target as well as some limitations of the developed protocol in real measurement conditions.

Optimization of Surface Functionalizations for Ring Resonator-Based Biosensors

Ardoino, N.;Lunelli, L.;Pucker, G.;Vanzetti, L.;Favaretto, R.;Pasquardini, L.;Pederzolli, C.;Potrich, C.
2024-01-01

Abstract

Liquid biopsy is expected to become widespread in the coming years thanks to point of care devices, which can include label-free biosensors. The surface functionalization of biosensors is a crucial aspect that influences their overall performance, resulting in the accurate, sensitive, and specific detection of target molecules. Here, the surface of a microring resonator (MRR)-based biosensor was functionalized for the detection of protein biomarkers. Among the several existing functionalization methods, a strategy based on aptamers and mercaptosilanes was selected as the most highly performing approach. All steps of the functionalization protocol were carefully characterized and optimized to obtain a suitable protocol to be transferred to the final biosensor. The functionalization protocol comprised a preliminary plasma treatment aimed at cleaning and activating the surface for the subsequent silanization step. Different plasma treatments as well as different silanes were tested in order to covalently bind aptamers specific to different biomarker targets, i.e., C-reactive protein, SARS-CoV-2 spike protein, and thrombin. Argon plasma and 1% v/v mercaptosilane were found as the most suitable for obtaining a homogeneous layer apt to aptamer conjugation. The aptamer concentration and time for immobilization were optimized, resulting in 1 µM and 3 h, respectively. A final passivation step based on mercaptohexanol was also implemented. The functionalization protocol was then evaluated for the detection of thrombin with a photonic biosensor based on microring resonators. The preliminary results identified the successful recognition of the correct target as well as some limitations of the developed protocol in real measurement conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/347267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact