We present an approach for extracting relations between named entities from natural language documents. The approach is based solely on shallow linguistic processing, such as tokenization, sentence splitting, part-of-speech tagging, and lemmatization. It uses a combination of kernel functions to integrate two different information sources: (i) the whole sentence where the relation appears, and (ii) the local contexts around the interacting entities. We present the results of experiments on extracting five different types of relations from a dataset of newswire documents and show that each information source provides a useful contribution to the recognition task. Usually the combined kernel significantly increases the precision with respect to the basic kernels, sometimes at the cost of a slightly lower recall. Moreover, we performed a set of experiments to assess the influence of the accuracy of named-entity recognition on the performance of the relation-extraction algorithm. Such experiments were performed using both the correct named entities (i.e., those manually annotated in the corpus) and the noisy named entities (i.e., those produced by a machine learning-based named-entity recognizer). The results show that our approach significantly improves the previous results obtained on the same dataset.

Relation Extraction and the Influence of Automatic Named-Entity Recognition

Giuliano, Claudio;Lavelli, Alberto;Romano, Lorenza
2007-01-01

Abstract

We present an approach for extracting relations between named entities from natural language documents. The approach is based solely on shallow linguistic processing, such as tokenization, sentence splitting, part-of-speech tagging, and lemmatization. It uses a combination of kernel functions to integrate two different information sources: (i) the whole sentence where the relation appears, and (ii) the local contexts around the interacting entities. We present the results of experiments on extracting five different types of relations from a dataset of newswire documents and show that each information source provides a useful contribution to the recognition task. Usually the combined kernel significantly increases the precision with respect to the basic kernels, sometimes at the cost of a slightly lower recall. Moreover, we performed a set of experiments to assess the influence of the accuracy of named-entity recognition on the performance of the relation-extraction algorithm. Such experiments were performed using both the correct named entities (i.e., those manually annotated in the corpus) and the noisy named entities (i.e., those produced by a machine learning-based named-entity recognizer). The results show that our approach significantly improves the previous results obtained on the same dataset.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/3318
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact