In dilute nitride InyGa1−yAs1−xNx alloys, a spatially controlled tuning of the energy gap can be realized by combining the introduction of N atoms—inducing a significant reduction of this parameter—with that of hydrogen atoms, which neutralize the effect of N. In these alloys, hydrogen forms N–H complexes in both Ga-rich and In-rich N environments. Here, photoluminescence measurements and thermal annealing treatments show that, surprisingly, N neutralization by H is significantly inhibited when the number of In-N bonds increases. Density functional theory calculations account for this result and reveal an original, physical phenomenon: only in the In-rich N environment, the InyGa1−yAs host matrix exerts a selective action on the N–H complexes by hindering the formation of the complexes more effective in the N passivation. This thoroughly overturns the usual perspective of defect-engineering by proposing a novel paradigm where a major role pertains to the defect-surrounding matrix.

Selective Effects of the Host Matrix in Hydrogenated InGaAsN Alloys: Toward an Integrated Matrix/Defect Engineering Paradigm

Giubertoni, Damiano;
2022-01-01

Abstract

In dilute nitride InyGa1−yAs1−xNx alloys, a spatially controlled tuning of the energy gap can be realized by combining the introduction of N atoms—inducing a significant reduction of this parameter—with that of hydrogen atoms, which neutralize the effect of N. In these alloys, hydrogen forms N–H complexes in both Ga-rich and In-rich N environments. Here, photoluminescence measurements and thermal annealing treatments show that, surprisingly, N neutralization by H is significantly inhibited when the number of In-N bonds increases. Density functional theory calculations account for this result and reveal an original, physical phenomenon: only in the In-rich N environment, the InyGa1−yAs host matrix exerts a selective action on the N–H complexes by hindering the formation of the complexes more effective in the N passivation. This thoroughly overturns the usual perspective of defect-engineering by proposing a novel paradigm where a major role pertains to the defect-surrounding matrix.
File in questo prodotto:
File Dimensione Formato  
Adv Funct Materials - 2021 - Filippone - Selective Effects of the Host Matrix in Hydrogenated InGaAsN Alloys Toward an.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/329330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact