We introduce TAASRAD19, a high-resolution radar reflectivity dataset collected by the Civil Protection weather radar of the Trentino South Tyrol Region, in the Italian Alps. The dataset includes 894,916 timesteps of precipitation from more than 9 years of data, offering a novel resource to develop and benchmark analog ensemble models and machine learning solutions for precipitation nowcasting. Data are expressed as 2D images, considering the maximum reflectivity on the vertical section at 5 min sampling rate, covering an area of 240 km of diameter at 500 m horizontal resolution. The TAASRAD19 distribution also includes a curated set of 1,732 sequences, for a total of 362,233 radar images, labeled with precipitation type tags assigned by expert meteorologists. We validate TAASRAD19 as a benchmark for nowcasting methods by introducing a TrajGRU deep learning model to forecast reflectivity, and a procedure based on the UMAP dimensionality reduction algorithm for interactive exploration. Software methods for data pre-processing, model training and inference, and a pre-trained model are publicly available on GitHub (https://github.com/MPBA/TAASRAD19) for study replication and reproducibility.

TAASRAD19, a high-resolution weather radar reflectivity dataset for precipitation nowcasting

Franch, Gabriele;Maggio, Valerio;Coviello, Luca;Jurman, Giuseppe;Furlanello, Cesare
2020-01-01

Abstract

We introduce TAASRAD19, a high-resolution radar reflectivity dataset collected by the Civil Protection weather radar of the Trentino South Tyrol Region, in the Italian Alps. The dataset includes 894,916 timesteps of precipitation from more than 9 years of data, offering a novel resource to develop and benchmark analog ensemble models and machine learning solutions for precipitation nowcasting. Data are expressed as 2D images, considering the maximum reflectivity on the vertical section at 5 min sampling rate, covering an area of 240 km of diameter at 500 m horizontal resolution. The TAASRAD19 distribution also includes a curated set of 1,732 sequences, for a total of 362,233 radar images, labeled with precipitation type tags assigned by expert meteorologists. We validate TAASRAD19 as a benchmark for nowcasting methods by introducing a TrajGRU deep learning model to forecast reflectivity, and a procedure based on the UMAP dimensionality reduction algorithm for interactive exploration. Software methods for data pre-processing, model training and inference, and a pre-trained model are publicly available on GitHub (https://github.com/MPBA/TAASRAD19) for study replication and reproducibility.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/322726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact