Accurate crown detection and delineation of dominant and subdominant trees are crucial for accurate inventorying of forests at the individual tree level. The state-of-the-art tree detection and crown delineation methods have good performance mostly with dominant trees, whereas exhibits a reduced accuracy when dealing with subdominant trees. In this paper, we propose a novel approach to accurately detect and delineate both the dominant and subdominant tree crowns in conifer-dominated multistoried forests using small footprint high-density airborne Light Detection and Ranging data. Here, 3-D candidate cloud segments delineated using a canopy height model segmentation technique are projected onto a novel 3-D space where both the dominant and subdominant tree crowns can be accurately detected and delineated. Tree crowns are detected using 2-D features derived from the projected data. The delineation of the crown is performed at the voxel level with the help of both the 2-D features and 3-D texture information derived from the cloud segment. The texture information is modeled by using 3-D Gray Level Co-occurrence Matrix. The performance evaluation was done on a set of six circular plots for which reference data are available. The high detection and delineation accuracies obtained over the state of the art prove the performance of the proposed method.

A Local Projection-Based Approach to Individual Tree Detection and 3-D Crown Delineation in Multistoried Coniferous Forests Using High-Density Airborne LiDAR Data

Aravind Harikumar;Francesca Bovolo;
2019-01-01

Abstract

Accurate crown detection and delineation of dominant and subdominant trees are crucial for accurate inventorying of forests at the individual tree level. The state-of-the-art tree detection and crown delineation methods have good performance mostly with dominant trees, whereas exhibits a reduced accuracy when dealing with subdominant trees. In this paper, we propose a novel approach to accurately detect and delineate both the dominant and subdominant tree crowns in conifer-dominated multistoried forests using small footprint high-density airborne Light Detection and Ranging data. Here, 3-D candidate cloud segments delineated using a canopy height model segmentation technique are projected onto a novel 3-D space where both the dominant and subdominant tree crowns can be accurately detected and delineated. Tree crowns are detected using 2-D features derived from the projected data. The delineation of the crown is performed at the voxel level with the help of both the 2-D features and 3-D texture information derived from the cloud segment. The texture information is modeled by using 3-D Gray Level Co-occurrence Matrix. The performance evaluation was done on a set of six circular plots for which reference data are available. The high detection and delineation accuracies obtained over the state of the art prove the performance of the proposed method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/316007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact