In the area of human behaviour analysis, smartphones are opening new possibilities where a multitude of embedded sensors can be used to regularly monitor users’ daily activities and interactions in a non-obtrusive way. In this paper we focus on proximity detection, which refers to the ability of a system to recognize the co-location of two or more individuals and infer interpersonal distances. We present Comm2Sense, our mobile platform to detect proximity among users exploiting sensing capabilities available in modern smartphones, namely Wi-Fi hotspot and Wi-Fi receiver. The platform estimates the distance between subjects applying data mining techniques to the analysis of the Wi-Fi RSSI. We describe the design and implementation of the platform, together with the technical solutions implemented in each module. We demonstrate that the proposed platform is able to achieve a resolution of 0.5 m.

An Analysis of Distance Estimation to Detect Proximity in Social Interactions

Venet Osmani;Iacopo Carreras;Aleksandar Matic;Piret Saar
2013-01-01

Abstract

In the area of human behaviour analysis, smartphones are opening new possibilities where a multitude of embedded sensors can be used to regularly monitor users’ daily activities and interactions in a non-obtrusive way. In this paper we focus on proximity detection, which refers to the ability of a system to recognize the co-location of two or more individuals and infer interpersonal distances. We present Comm2Sense, our mobile platform to detect proximity among users exploiting sensing capabilities available in modern smartphones, namely Wi-Fi hotspot and Wi-Fi receiver. The platform estimates the distance between subjects applying data mining techniques to the analysis of the Wi-Fi RSSI. We describe the design and implementation of the platform, together with the technical solutions implemented in each module. We demonstrate that the proposed platform is able to achieve a resolution of 0.5 m.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/314785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact