Predictive business process monitoring exploits event logs to predict how ongoing (uncompleted) traces will unfold up to their completion. A predictive process monitoring framework collects a range of techniques that allow users to get accurate predictions about the achievement of a goal for a given ongoing trace. These techniques can be combined and their parameters configured in different framework instances. Unfortunately, a unique framework instance that is general enough to outperform others for every dataset, goal or type of prediction is elusive. Thus, the selection and configuration of a framework instance needs to be done for a given dataset. This paper presents a predictive process monitoring framework armed with a hyperparameter optimization method to select a suitable framework instance for a given dataset.

Genetic algorithms for hyperparameter optimization in predictive business process monitoring

Di Francescomarino, Chiara;Ghidini, Chiara;Rizzi, Williams;
2018-01-01

Abstract

Predictive business process monitoring exploits event logs to predict how ongoing (uncompleted) traces will unfold up to their completion. A predictive process monitoring framework collects a range of techniques that allow users to get accurate predictions about the achievement of a goal for a given ongoing trace. These techniques can be combined and their parameters configured in different framework instances. Unfortunately, a unique framework instance that is general enough to outperform others for every dataset, goal or type of prediction is elusive. Thus, the selection and configuration of a framework instance needs to be done for a given dataset. This paper presents a predictive process monitoring framework armed with a hyperparameter optimization method to select a suitable framework instance for a given dataset.
File in questo prodotto:
File Dimensione Formato  
Genetic algorithms for hyperparameter optimization in predictive business process monitoring.pdf

accesso aperto

Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/313864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact