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Abstract 

Predictive business process monitoring aims at predicting the outcome of 
ongoing cases of a business process based on past execution traces. A wide 
range of techniques for this predictive task have been proposed in the liter- 
ature. It turns out that no single technique, under a default configuration, 
consistently achieves the best predictive accuracy across all datasets. Thus, 
the selection and configuration of a technique needs to be done for each 
dataset. This paper presents a framework for predictive process monitoring 
that brings together a range of techniques, each with an associated set of 
hyperparameters. The framework incorporates two automatic hyperparame- 
ter optimization algorithms, which given a dataset, select suitable techniques 
for each step in the framework and configure these techniques with minimal 
user input. The proposed framework and hyperparameter optimization al- 
gorithms have been evaluated on two real-life datasets and compared with 
state-of-the-art approaches for predictive business process monitoring. The 
results demonstrate the scalability of the approach and its ability to identify 
accurate and reliable framework configurations. 
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1. Introduction 

Predictive business process monitoring is a family of techniques to pre- 
dict the outcome of ongoing cases of a business process based on logs of past 
executions of the process. A predictive process monitoring technique allows 
users to specify a function that labels each completed case of the process 
into one of multiple possible classes. For example, in a sales process such a 
function might classify each case into “successful” or “unsuccessful”, while 
in an issue-to-resolution process, it might classify each case into “customer 
satisfied” or “customer unsatisfied”. By analyzing the traces of completed 
cases and their labels, a runtime component (the monitor ) continuously es- 
timates the likelihood that the function in question will take a given value 
(e.g., “successful”) upon completion of each ongoing case of the process. 

In previous work [1, 2], we proposed a customizable predictive process 
monitoring framework comprising a set of techniques to construct models 
to predict whether or not an ongoing case will ultimately satisfy a given 
classification function based both on: (i) the sequence of activities executed 
in the given case, and (ii) the values of data attributes after each activity 
execution in the case. 

The framework can be instantiated by selecting and configuring various 
machine learning components (clustering and classification techniques). This 
configurability is an advantage, since previous work in the field has shown 
that no single technique, with a default configuration, performs well across 
all datasets [3, 4]. However, configuring such a framework in order to max- 
imize predictive accuracy for a given dataset is non-trivial. For example, in 
the framework presented in [1, 2], the instantiation of the framework requires 
one to select among different classification algorithms (e.g., decision trees or 
random forests) and clustering algorithms (e.g., k-means, agglomerative clus- 
tering or dbscan), and to tune the so-called hyperparameters (see [3, 4]) upon 
which these techniques rely. While expert users are able to make suitable 
choices after significant trial-and-error and tuning, non-experts generally fall 
back to default choices [5]. 

A conventional approach to this problem is to perform an exhaustive 
search over a given set of options and hyperparameter ranges [3]. This means 
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running each possible configuration of the framework on a training dataset, 
evaluating them on a validation dataset, and comparing the results obtained 
with different configurations in order to select the most suitable one for the 
dataset in question. This exhaustive approach, however, on the one hand 
demands expertise to set the hyperparameter ranges and on the other does 
not scale up when the space of possible configurations is large. This is often 
the case since, for example, four possible classification techniques and four 
clustering techniques, each with three hyperparameters on average, and each 
hyperparameter with a range of a dozen of possible values, already leads to 
a space of over 500 possible configurations. A space of this size can take 
hours or days to be explored exhaustively using a real-life dataset. Another 
crucial aspect is that, since the suitability of a given configuration can be 
assessed with respect to multiple goodness measures (e.g., accuracy of the 
predicted outcomes and earliness of the predictions), different solutions can 
be the “most suitable” to optimize different measures. Finally, since in the 
context of predictive business process monitoring two dimensions should be 
taken into consideration, i.e., control flow and data, it is often the case that a 
combination of techniques should be employed to retrieve information from 
both these dimensions. To the best of our knowledge, in the literature, 
there are no approaches that optimize the selection of techniques and of 
the corresponding hyperparameter values for addressing multiple combined 
sub-problems. 

In this article, we address the above issues by proposing a predictive pro- 
cess monitoring framework armed with scalable automatic hyperparameter 
optimization techniques. In particular, we propose a meta-heuristic approach 
to explore the hyperparameter configuration space based on genetic algo- 
rithms. Evolutionary algorithms, like genetic ones, are, indeed, together with 
grid search, random search and bayesian optimization techniques, among the 
most used approaches to solve the hyperparameter optimization problem [6]. 
For instance, they have been successfully applied for optimizing the param- 
eter selection of Support Vector Machines (SVM) [7, 8] and neural network 
models [9]. Genetic algorithms can either use single-objective functions to 
optimize a combination of multiple goodness measures, or Pareto fronts to 
optimize different measures separately. The proposed hyperparameter opti- 
mization algorithms, which guarantee the identification of an optimal or near- 
optimal solution, have been evaluated on two real-life datasets and compared 
with state-of-the-art approaches for predictive business process monitoring. 
The results demonstrate the scalability of the approach and its ability to 
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identify accurate and reliable framework configurations. 
The approach presented here significantly extends the one presented in a 

conference version of this article [10]. While in [10], we proposed an exhaus- 
tive search approach over user-defined hyperparameter ranges, and a man- 
ual approach to compare hyperparameter configurations, in this extended 
version, we outline more scalable genetic algorithms for hyperparameter op- 
timization and two approaches to aid the user to select the most suitable 
technique in a given context: one based on single-objective optimization and 
another based on multi-objective optimization. 

The rest of the paper is structured as follows. Section 2 introduces some 
background elements needed to understand the rest of the paper. Next, 
Section 3 and Section 5 introduce two motivating scenarios and the overall 
approach, respectively. The implementation of the approach is then detailed 
in Section 6. An evaluation is presented in Section 7, while Section 8 and 
Section 9 conclude the paper with related and future work. 

 
2. Background 

In this section, we give an overview of the background notions useful in 
the rest of the paper. 

 

2.1. Predictive Business Process Monitoring 

Predictive analytics is a field including techniques to analyze current and 
historical facts to make predictions about future or otherwise unknown events 
[11, 12]. Predictive business process monitoring [13] aims at applying pre- 
dictive analytics to business processes. Under the umbrella of the predictive 
business process monitoring paradigm, different approaches have been pro- 
posed and realized [13, 14, 15, 16, 17, 18, 19], motivated by the increasingly 
pervasive availability of fine-grained event data about business process exe- 
cutions. In particular, in this paper, we focus on approaches that address 
the problem of outcome-based predictive process monitoring [20], which refers 
to classifying each ongoing case of a process according to a given set of pos- 
sible outcomes, e.g., “will the customer complain or not?”, “will an order 
be delivered, cancelled or withdrawn?”. In this paradigm, a user specifies a 
business goal and, based on an analysis of historical cases, she is provided 
with estimations of the likelihood of achieving the business goal for a given 
ongoing case. A business goal can be more or less articulated and also cover 
objectives that need to be achieved by different stakeholders. For example, 



5  

 
 
 
 

in a sales process, the business goal can be at two levels: the organization 
level (e.g., the achievement of a certain profit) and the customer level (e.g., 
high customer satisfaction). 

The predictions generally depend both on: (i) the sequence of activi- 
ties executed in the given case,  and (ii) the values of data attributes after 
each activity execution in the case. In this paper, we build our contribution 
on top of the Predictive Process Monitoring Framework presented in [1, 2] 
and described in detail in Section 4. In particular, we start from this exist- 
ing framework and equip it with a hyperparameter optimization mechanism 
based on genetic algorithms. 

 

2.2. Hyperparameter Optimization 

Traditionally, machine learning techniques are characterized by model pa- 
rameters and by hyperparameters [3, 4]. While model parameters are learned 
during the training phase so as to fit the data, hyperparameters are set out- 
side the training procedure and used for controlling how flexible the model 
is in fitting the data. For instance, the number of clusters in the k-means 
clustering procedure is a hyperparameter of the clustering technique. The 
impact of hyperparameter values on the accuracy of the predictions can be 
extremely high. Optimizing their value is therefore important, but, at the 
same time, optimal values depend on the specific dataset under examination 
[3, 4]. 

 

2.3. Genetic Algorithms 

Genetic algorithms [21] are metaheuristic optimization algorithms resem- 
bling the natural evolution. By relying on the evolutionary theory of the 
survival of the fittest and on the ideas of selection and mutation, genetic 
algorithms aim at simulating the evolution of solutions over different gener- 
ations so as to eventually identify an optimal or near-optimal solution for an 
optimization problem. Figure 1 reports the typical workflow followed by a 
genetic algorithm. An initial set of candidate solutions, i.e., the initial pop- 
ulation, is first identified, either randomly or according to some heuristics. 
Therefore, the algorithm evaluates the fitness of each solution and selects the 
best individuals according to a fitness function [21], i.e., a function defining 
the suitability of the solution to the problem. Then, a set of genetic oper- 
ators such as crossover and mutation is used to evolve the best individuals 
and to generate a new population. The new population is, in turn, evalu- 
ated and evolved with the same mechanism until a termination condition on 
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the fitness function or on the maximum number of generations is met. The 
best individuals of the population are therefore identified and returned as a 
solution of the optimization problem. 

Single- and multi-objective optimization. An optimization problem can be 
single-objective, when it involves only one objective function, which can 
synthesize a combination of different goodness measures, or multi-objective, 
when more than one objective function has to be optimized. While in the 
former type of problem, a unique solution exists, which is the solution opti- 
mized with respect to the single-objective function, this is not the case for 
the latter. Indeed, in this case, a set of solutions is found, a.k.a. Pareto front. 
A Pareto front is composed of a set of non-dominated solutions, i.e., solutions 
in which none of the objective functions can be improved in value without 
degrading some of the other objective values [22]. 

 
3. Two Motivating Scenarios 

We aim at addressing the problem of easing the task of predictive process 
monitoring, by enabling users to easily select and configure a specific instance 
of the Predictive Process Monitoring Framework to fit a specific dataset. In 
this section, we introduce two motivating scenarios, which will also be used 
as a basis for the evaluation of the Predictive Process Monitoring Framework 
tool provided in Section 7. 

 

Scenario 1. Predicting patient history. Let Bob be a medical director of an 
oncology department of an important hospital who is interested in predicting 
the type of medical exams that will be performed on patient Alice, and when. 
In particular, he is interested in knowing if, given the clinical record of Alice: 
(i) she will need two specific medical exams named tumor marker CA 19.9 
and ca  125 using meia, and when, and (ii) it is likely that the execution 
of a particular medical exam (CEA tumor marker using meia) will be 
followed by the development of a particular type of allergy in the future. Since 

 
 

 

Figure 1: Genetic algorithm workflow 
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his department has started an innovative project aiming at using predictive 
process monitoring techniques to analyze event logs related to the patient 
history, the hospital records a number of relevant datasets to enable the 
usage of a predictive process monitoring framework. He can, therefore, use 
the framework in order to make predictions. However, when ready to use 
the framework, he finds out that: (i) he needs to specify a list of techniques 
required to instantiate the framework, and (ii) for each of these techniques, 
he has to specify a set of hyperparameters. However, being a medical doctor 
he does not have the necessary knowledge to understand which technique 
is better to use and the parameters to set, and he does not want to spend 
time in manually choosing the best ones. His knowledge only enables him 
to select the business goal he wants to achieve and the dataset of similar 
cases relevant for the prediction. Thus, an automated way for helping him 
in understanding which configuration works best for his dataset and specific 
business goal is needed. 

 

Scenario 2. Predicting problems in building permit applications.   Let John be 
a clerk handling building permit applications of a Dutch Municipality. The 
majority of regular building permit applications required for building, mod- 
ifying or demolishing houses in the Netherlands must be accompanied with 
the necessary fees and documentation, including design plans, photos and 
pertinent reports. They are, therefore, often unsuccessfully checked for com- 
pleteness, and the owner of the application is often asked to send the missing 
data. This implies extra work from her side and from the building permit 
application office. Moreover, many of the permit applications also require an 
environmental license (WABO) and getting the WABO license can either be 
fast or demand for a long extension of the building permit procedure. This 
would require a rescheduling of the work of the building permit application 
office. John is therefore interested in knowing, for example, (i) whether the 
4 applications he has just received and of which he has acknowledged the 
receipt will undergo a series of actions required to retrieve missing data, and 
(ii) whether these applications will require getting an environmental license, 
which will entail an extension of the building permit procedure. As in Sce- 
nario 1, the Municipality where John works stores all the necessary datasets 
to enable the usage of predictive monitoring techniques, but the difficulty 
in choosing the right technique and the need of configuring parameters may 
seriously hamper his ability to use the predictive monitoring tools.    Thus, 
a way for helping him in automatically setting up the correct configuration 
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that works best for his dataset and specific business goal is needed also in 
this scenario. 

 
4. Basic Framework 

The basic Predictive Process Monitoring Framework , presented in [1, 2], 
collects a set of machine learning techniques that can be instantiated and used 
for continuously providing predictions to the user. In detail, the framework 
takes as input a set of past executions and tries to predict how current ongo- 
ing executions will develop in the future. For this purpose, before the process 
execution, a pre-processing phase is carried out. In this phase, state-of-the- 
art approaches for clustering and classification are applied to the historical 
data in order to (i) identify and group historical trace prefixes with a similar 
control flow, i.e., to delimit the search space on the basis of the control flow 
(control flow-based clustering), and (ii) get a precise classification based on 
data of traces with similar control flow (a data-based classifier is built for 
each cluster). 

The rationale for separating the problem of predictive business process 
monitoring into two sub-problems (a clustering sub-problem and a classifica- 
tion sub-problem) is that, in predictive business process monitoring, we have 
to deal with the so-called complex symbolic sequences [23]. A complex sym- 
bolic sequence is a sequence consisting of events (with certain labels), each of 
which is associated with a payload consisting of attribute-value pairs. This 
structure can be seen as two equal-length sequences (the sequence of event 
labels, and the sequence of event payloads). In addition, since complex sym- 
bolic sequences represent the executions of a business process, they can be 
of very different lengths: some sequences are very short (e.g., process exe- 
cutions that finish after a handful of events because they are aborted) and 
some are very long (e.g., process executions where there is a lot of rework and 
exception handling). The above two characteristics lead us to rely on a two- 
phased cluster-and-classify approach, where the clustering phase is used to 
handle the sequence of event labels (by grouping them into clusters of similar 
prefixes), and the classification phase is used to handle the event payloads. 

Clusters and classifiers computed as outlined above are stored and used 
at runtime to classify new traces during their execution. In particular, a 
given trace prefix is matched to a cluster, and the corresponding classifier 
is used to estimate the (class) probability for the trace to achieve a certain 
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Figure 2:  Predictive Process Monitoring Framework 
 
 

outcome and the corresponding (class) support (that also gives a measure of 
the reliability of the classification algorithm outcomes). 

The proposed approach is akin to ensemble methods, where multiple clas- 
sifiers are constructed to address a given classification problem. Indeed, in 
our approach, we construct one classifier per cluster. However, the proposed 
approach does not qualify as an ensemble method as it does not involve any 
voting nor error-correction mechanism to combine the predictions made by 
each classifier in the ensemble. Instead, the proposed approach is a non- 
ensemble multiple-classifier approach, where a given sample (trace prefix) is 
routed to a single classifier among multiple ones. The justification for this 
approach is that the trace prefixes for which we need to make predictions 
are highly heterogeneous: there is a large variability in the lengths of the 
trace prefixes (some consist of 1-2 events, others may consist of over a dozen 
events) and the alphabet of event labels varies considerably across trace pre- 
fixes. By applying a clustering approach, we divide the set of trace prefixes 
into more homogeneous clusters, so that we can build simpler and poten- 
tially more accurate classifiers for each cluster. The overall picture of the 
framework is illustrated in Figure 2. 

Within such a framework, we can identify three main modules: the encod- 
ing, the clustering and the supervised classification learning module. Each of 
them can be instantiated with different techniques. Figure 3 shows possible 
instances of the framework.1 

 
1Note that the techniques mentioned in Figure 3 and used in our experiments have 
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Figure 3: Framework instances overview 

Examples of encodings are frequency-based (a.k.a. term-frequency [1, 24]) 
and sequence-based [1, 25]. The former is realized representing a trace as 
a vector of event occurrences (on the alphabet of the events), while, in the 
latter, the trace is encoded as a sequence of events. These encodings can 
then be passed to a clustering technique. Examples of these techniques are 
dbscan clustering [26], k-means clustering [27] and agglomerative clustering 
[28]. The Euclidean distance, used by k-means, is computed starting from 
the frequency-based encoding, while the edit distance, used by dbscan, is 
computed starting from the sequence-based encoding of the traces. The 
supervised learning module can include learning techniques like decision tree 
and random forest. 

Each of these techniques requires a number of hyperparameters (specific 
for the technique) to be configured. For example, k-means and agglomerative 
clustering take as input the number of clusters, while dbscan requires the 
minimum number of points in a cluster and the minimum cluster ray. In 
addition, the framework also requires the configuration of other parameters, 
such as: 

length of prefixes of historical traces to be grouped in clusters and used 
for training the classifiers; 

 
been chosen based on the characteristics of the available datasets (which do not contain 
a particularly large amount of data) and are purely exemplificative. This still allows the 
user to use any other machine learning technique to solve the clustering and classification 
tasks. Indeed, the hyperparameter optimization with genetic algorithms is not tailored to 
a specific technique but it is general and can be applied to any combination of techniques 
and hyperparameters. 

• 



11  

 
 
 
 

a voting mechanism [29], so that the p clusters closest to the current 
trace are selected, the prediction according to the corresponding clas- 
sifiers estimated, and the prediction with the highest number of votes 
(from the classifiers) returned; 

when the prediction is related to the completion time interval, a mech- 
anism for the definition of the time intervals (e.g., q intervals of the 
same duration, based on q-quantiles, or based on a normal distribution 
of the time). 

The framework can then be instantiated through different combinations 
of these techniques and hyperparameters. Although, in the pre-processing 
phase, the intermediate results are stored for reuse, different configurations 
can demand for different intermediate results. Each choice of technique (and 
hyperparameters) in a configuration can indeed affect the Predictive Process 
Monitoring Framework flow at different stages. For instance, the choice of 
the encoding type affects the clusters built from the historical traces; the 
choice of the classification learning technique does not affect the clusters but 
it does affect the classifiers built on top of them. 

The framework has been implemented as an Operational Support (OS) 
provider of the OS Service 2.0 [30, 31] of the ProM toolset. In particular, the 
OS service is able to interact with external workflow engines by receiving at 
runtime streams of events and processing them through the providers. 

 
5. Genetic-Enhanced  Framework 

The Genetic-Enhanced Predictive Process Monitoring Framework pro- 
posed in this work relies on arming the basic Predictive Process  Monitor- 
ing Framework with genetic algorithms to support users in the choice of 
the framework configuration that best suits their dataset and business goal. 
Indeed, genetic algorithms allow for the exploration of the search space of 
the different framework instances, by starting from an initial population and 
evolving it while optimizing a fitness function. For this purpose, the approach 
proposed in this work adds to the basic Predictive Process Monitoring Frame- 
work two levels of abstraction and aggregation: one aiming at providing an 
evaluation of each configuration on a validation set of traces and a second one 
for evolving a population of configurations in order to identify the best con- 
figuration(s). These levels are implemented in the Genetic-enhanced Tuner. 
Therefore, the Genetic-Enhanced Predictive Process Monitoring Framework 

• 

• 
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is the combination of the basic Predictive Process Monitoring Framework and 
the Genetic-Enhanced Tuner. 

5.1. Architecture of the Genetic-Enhanced Tuner 

Figure 4 shows the architecture of the Genetic-Enhanced Tuner. The 
tuner takes as inputs from the user a training set, a business goal, and a 
validation set and returns the configuration(s) that best suit the specific 
dataset and business goal. 

 

Figure 4:  Internal architecture of the Genetic-Enhanced Tuner 

 

The flow of the logical architecture starts with a set of initial (randomly 
generated) framework configurations (initial population), which are sent to 
the Predictive Process Monitoring Framework in charge of producing a set 
of predictions for each configuration. The Configuration Tracker encodes 
each framework configuration in the right format for the Predictive Process 
Monitoring Framework that will generate the predictions for the traces in 
the validation set. An Evaluator will then be in charge of evaluating the 
provided predictions according to a set of fitness functions defined in terms of 
configuration metrics. A configuration metric is a measure of the goodness of 
a given configuration. Three such measures of goodness are discussed below. 
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As they are computed, the configuration metrics are sent to the Configu- 
ration Tracker that takes care of collecting them and providing them to the 
Genetic Algorithm Module. The Genetic Algorithm Module, in turn, uses the 
configuration metrics in order to compute a single- or a multi-objective fit- 
ness function and rank the configurations according to this function. For the 
Genetic Algorithm Module, each framework configuration is an individual of 
the population which is encoded as a vector where every element represents 
a configuration parameter. For instance, Figure 5 gives a hint of a possible 
encoding of a framework configuration. From the set of configurations, the 
module selects the best ones, which are used, by applying mutation operators, 
to produce the next generation of framework configurations. 

The new population of configurations is sent again to the Configuration 
Tracker and, one by one, to the Predictive Process Monitoring Framework for 
the evaluation. The process is iterated, until a threshold is reached in terms 
of number of generations or number of generations without any improvement 
in the fitness function (a.k.a. stagnation value). Once the genetic algorithm 
execution is terminated, one or more framework configurations are returned 
to the user as output, based on whether a single- or a multi-objective ap- 
proach to the optimization problem is taken. These configurations can be 
used to tune the Predictive Process Monitoring Framework and run it on a 
testing set. 

 

Figure 5: Example of encoding of a framework configuration 
 

 
5.2. Configuration Metrics 

To instantiate the above architecture, we need to define metrics to eval- 
uate the quality of the predictions produced by a given configuration. Here, 
we define three metrics corresponding to an online monitoring scenario in 
which a prediction is made for a given case, as soon as the class probability 
returned by the classifier is above a given user-defined threshold. In other 
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words, every time an event occurs in a given case, we convert the current 
trace prefix into a feature vector, and we feed this feature vector to the clas- 
sifier associated to the closest cluster relative to this trace prefix. If the class 
probability returned by the classifier is above the threshold, we return the 
predicted class and no further predictions are made for this case (i.e., the 
case is considered to have been “classified”). If the class probability is be- 
low the threshold, no prediction is made at this stage. Sometimes, a case 
might finish before a prediction is made. In this case, we say that there is a 
prediction failure. 

Given the above, one possible measure of accuracy is the ratio between 
the number of times a correct prediction is made and the total number of 
predictions made. However, since in some cases no prediction is made at 
all, we need to complement this metric with a failure-rate. Finally, since an 
early prediction is better than a late prediction, we also define a third metric, 
namely the earliness, which captures how early in a given case the prediction 
is made. More in detail, these metrics are defined as follows. 

Accuracy. This metric is defined with respect to a gold standard that 
indicates the correct labeling of each trace. In our experiments, we 
extracted the gold standard by evaluating the achievement of a business 
goal in each completed trace in the testing set. Given the gold standard, 
we classify predictions made at runtime into four categories: i) true- 
positive (TP : positive outcomes correctly predicted); ii) false-positive 
(FP : negative outcomes predicted as positive); iii) true-negative (TN : 
negative outcomes correctly predicted); iv) false-negative (FN : positive 
outcomes predicted as negative). Accuracy indicates how many times 
a prediction was correct. 

Failure-rate. During the replay of each trace in the testing log, we 
give a prediction every X events (starting from the first event in the 
trace). While replaying a trace, we consider a prediction reliable and we 
stop the replay when the corresponding class probability is above the 
given minimum class probability threshold. Therefore, it can happen 
that, when replaying a trace of the testing set, the end of the trace is 
reached and no prediction has been made. In this case, the answer of 
the predictor is “maybe” to indicate that it was not possible to provide 
a reliable prediction. The percentage of traces in the log that lead to 
a failure in the prediction is called failure-rate [32]. 

• 

• 
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Earliness. The earliness of the prediction [1] is defined as one minus 
the ratio between the index indicating the position of the last evaluation 
point (the one corresponding to the reliable prediction) and the length 
of the trace under examination. The earliness of a prediction is directly 
dependent on the chosen class probability threshold. The lower the 
class probability threshold is, the earlier a prediction is given. 

Note that the proposed framework leaves us the flexibility to choose which 
one of the three metrics should be preferred based on different scenarios. For 
instance, we can favor the accuracy over the failure-rate and the earliness 
(by choosing a high class probability threshold) or we can favor a low failure- 
rate to the detriment of the accuracy (by specifying a low class probability 
threshold). 

An alternative approach would have been to fix a given prefix length (say 
3) and to make predictions when a trace reaches this length. We could then 
measure the Area Under the Curve (AUC) of these predictions. This could 
then be repeated for all possible prefix lengths, and a mean of the AUC 
values (across prefix lengths) could be used as an accuracy measure for a 
given configuration. This approach, however, does not give us a direct idea 
of how early a prediction can be made during the execution of a case. 

5.3. Genetic Algorithm Module 

In this work, the choice of the single-objective fitness function is mainly 
based on the assumption that a generic user of the Predictive Process Moni- 
toring Framework would likely be interested in balancing the correctness of 
the returned predictions (accuracy) and the rate of the non-returned pre- 
dictions (failure-rate). For instance, John, in Scenario 2 of Section 3, will 
likely be interested in getting as many predictions as possible, while preserv- 
ing an adequate level of correctness. Moreover, we also include earliness for 
promoting early predictions, although with a lower weight. 

Given the above, we define the single-objective fitness function as:2 

fitness = accuracy + (1.0 − failureRate) + (earliness/reducingFactor) 

Differently from the single-objective approach, the multi-objective ap- 
proach offers more freedom to the user, leaving her the possibility to choose 

 
2reducingFactor is a value used to limit the influence of the earliness in the fitness 

calculation. In this work, the reducing factor has been set to 20. 

• 
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the most suitable solution from a set of Pareto optimal solutions. For ex- 
ample, in a hospital scenario, a doctor who relies on a prediction based on 
historical data to make a decision about a treatment for a patient can choose 
a treatment that favors the highest accuracy, the one with the lowest failure- 
rate or the one that incorporates the best balance between the two, according 
to her specific needs. The higher flexibility of the multi-objective approach 
is guaranteed at the cost of possibly lower performance or longer computa- 
tion times with respect to the single-objective approach. The fitness function 
investigated in this case is calculated as: 

score = [accuracy, (1.0 − failureRate)] 

Also in this case, the choice of the fitness function is based on the assump- 
tion that a user would mainly be interested in the interplay between accuracy 
and failure-rate. For instance, Bob, in Scenario 1 of Section 3, would be in- 
terested in choosing among different configurations, so as to be able to (i) 
get only accurate predictions (highest accuracy), in case of highly critical 
situations; (ii) always get predictions,  even if they could be incorrect (low- 
est failure-rate), in case he just needs hints on what to do next; (iii) get 
predictions balancing high accuracy and low failure-rate. 

Different types of genetic algorithms for the multi-objective optimization 
exist. In this work, we chose to use the Non-dominated Sorting Genetic Algo- 
rithm II (NSGA-II) [33]. Indeed, this is a well known and adopted algorithm, 
it is easy to understand and implemented in many libraries. Moreover, it has 
been used for solving problems of hyperparameter optimization [34] and it 
has the same or better performance than its main competitor, the Strength 
Pareto Evolutionary Algorithm II (SPEA-II) [35]. 

 
6. Implementation 

In order to realize the approach described in Section 5, the Genetic Al- 
gorithm Module, depicted in Figure 4, has been implemented by instanti- 
ating two existing genetic algorithm frameworks, one supporting the single- 
objective approach and the other supporting the multi-objective approach. 
Moreover, the Configuration Tracker module has been implemented to inter- 
face the Genetic Algorithm Module with the Predictive Process Monitoring 
Framework . All modules have been implemented in Java. 
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6.1. Single-Objective Approach 

The implementation used for the single-objective approach is based on 
the Watchmaker Framework,3 a simple-to-use library that provides several 
features ready to be used in a custom-made genetic algorithm. 

Framework. The Watchmaker Framework is an optimized library for genetic 
algorithms written in Java and using a well documented and non-invasive 
API. It supports multi-threading and provides several genetic operators, evo- 
lution schemes and termination conditions. 

Framework instantiation. The Watchmaker Framework has been instanti- 
ated by implementing the classes of the library reflecting the typical compo- 
nents of a genetic algorithm, as reported in the following. 

 

Encoding. A predictive monitoring framework configuration is en- 
coded as a vector where every element represents a framework param- 
eter. 

Operators. The uniform crossover and uniform mutation have been 
implemented as extensions of the crossover and mutation abstract classes 
of the framework. The sigma scaling technique available in the frame- 
work has been used for the selection of the best individuals. 

Fitness function. As reported in Section 5, the fitness function has 
been set to: 

fitness   =   accuracy+(1.0−failureRate)+(earliness/reducingFactor) 

Output. The output generated by this approach consists of a single solution 
(framework configuration) with the best fitness in the last generation. This 
solution should approximate the framework configuration that better fits the 
problem. 

Custom evolution monitor GUI. The library has a GUI that can show im- 
portant statistics about population, fittest individual, time elapsed, memory 
usage. The GUI has been adapted to be able to show the generation progress 
and the best individual fitness. Figure 6a and 6b report the screenshots of 

 
3http://watchmaker.uncommons.org/ 

• 

• 

• 

http://watchmaker.uncommons.org/
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(a) Best and mean generation fitness 
trend across the last 15 iterations 

(b) Fittest individual of the last gen- 
eration 

 

Figure 6: Customized evolution monitor GUI 
 
 

two of the panels of the customized GUI showing the trend of the best and 
mean fitness per generation (6a) and the fitness value of the fittest individual 
(6b), respectively. 

 

6.2. Multi-Objective Approach 

The framework instantiated for the multi-objective approach is Jenes 2.0. 

Framework. The Jenes 2.0 framework4 is an easy-to-use library with multi- 
threading support, efficient memory management, multiple genetic operators 
and a variety of different algorithms. 

Framework instantiation. Similarly to the Watchmaker Framework, also Jenes 
has been instantiated by implementing the classes reflecting the typical com- 
ponents of a genetic algorithm, as reported in the following. 

 

Encoding. A predictive monitoring framework configuration is en- 
coded as a vector where every element represents a framework param- 
eter. 

Operators. As this implementation uses an encoding of the individ- 
ual that fits with the needs of the faced problem, the existing genetic 

 
4The Jenes 2.0 framework has been developed by Intelligentia s.r.l and the Computa- 

tional and Intelligent System Engineering Lab (CISELab) at the University of Sannio. 

• 

• 
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operators, crossover and mutation have been used without any cus- 
tom adaptation. In particular, the tournament selection, the two-point 
crossover and the uniform mutation have been used for the selection of 
the best individuals, crossover and mutation, respectively. 

Fitness  function.  A fitness class provides a measure for evaluating 
the score of each individual. As already reported in Section 5, the 
fitness class has been instantiated with the following score value: 

score = [accuracy, (1.0 − failureRate)] 

The score is an array with two values, so that a Pareto front can be 
obtained by the execution of the algorithm. 

 

Output. The output of this approach is a set of solutions (framework configu- 
rations) corresponding to the Pareto front of the last generation of solutions. 

 
7. Evaluation 

This section reports an evaluation of the Genetic-Enhanced Predictive 
Process Monitoring Framework using both the single- and the multi-objective 
approach. 

 

7.1. Research Questions 

In order to evaluate the proposed approaches, we aim at answering the 
following two research questions: 

 
RQ1 How good is the framework configuration obtained by using a single- 
objective genetic algorithm approach? 
RQ2 How good are the framework configurations obtained by using a multi- 
objective genetic algorithm approach? 

RQ1 focuses on the single-objective approach and aims at investigating 
whether it is able to return a configuration which provides accurate predic- 
tions with a low failure-rate. RQ2 focuses on the multi-objective approach 
and aims at investigating whether it is able to return a set of configurations 
that are the most suitable for optimizing accuracy and failure-rate sepa- 
rately. In particular, to answer RQ1, the following three research questions 
have been investigated: 

• 
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RQ1.1 What is the shape of the fitness function? 
RQ1.2 How good are the results obtained by using the configuration returned 
by the algorithm with respect to the ones obtained with state-of-the-art pre- 
dictive process monitoring approaches? 
RQ1.3 How efficient is the algorithm in returning the suggested configura- 
tion? 

RQ1.1 aims at analyzing the fitness function shape in order to un- 
derstand how fast the function improves across the algorithm generations. 
RQ1.2 aims at evaluating whether the configuration provided by our fully 
automatic hyperparameter optimization approach generates predictions with 
comparable accuracy and failure-rate with respect to the ones obtained by 
applying state-of-the-art predictive process monitoring approaches. Finally, 
RQ1.3 investigates how much time is required by the algorithm to find the 
best configuration. 
Symmetrically, to answer RQ2, the following three research questions have 
been investigated: 

 

RQ2.1 What is the shape of the Pareto front? 
RQ2.2 How good are the results obtained by using the configurations returned 
by the algorithm with respect to the ones obtained with state-of-the-art pre- 
dictive process monitoring approaches? 
RQ2.3 How efficient is the algorithm in returning the suggested set of con- 
figurations? 

RQ2.1 focuses on evaluating the number and the distribution of the 
configurations on the Pareto front. RQ2.2 aims at evaluating whether the 
configurations automatically identified by the algorithm generate predictions 
optimal in at least one of two metrics – accuracy and failure-rate.   Finally, 
RQ2.3 investigates how much time is required by the algorithm to get the 
suggested set of configurations. 

 

7.2. Datasets 

For the evaluation of the proposed approaches, we used two datasets 
provided for the BPI Challenges 2011 [36] and 2015 [37], respectively. The 
first dataset consists of an event log pertaining to the treatment of patients 
diagnosed with cancer in a Dutch academic hospital. The log contains 1,140 
traces and 149,730 events referring to 623 different activities. 

In our experiments, we formulated business goals in terms of Linear Tem- 
poral Logic (LTL) formulas. LTL [38] is a modal logic with modalities de- 
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voted to describe time aspects. Classically, LTL is defined for infinite traces. 
However, when focusing on the compliance of business processes, we use a 
variant of LTL defined for finite traces (since business processes are sup- 
posed to complete eventually). The business goals investigated with the first 
dataset are reported below as LTL formulas: 

ϕ11 = F(“tumor marker CA − 19 − 9”)  ∨ F(“ca − 125 using meia”) 

ϕ12 = G(“CEA − tumor marker using meia” → 

F(“squamous cell carcinoma using eia”)) 

The first formula assesses that the medical exam for measuring the tumor 
marker CA-19-9 or the medical exam for measuring the tumor marker ca-125 
using meia will eventually occur, while the second one states that it always 
happens that the occurrence of the medical exam CEA-tumor marker using 
meia will eventually be followed by the medical exam for the diagnosis of 
squamous cell carcinoma. 

The second dataset was provided for the BPI Challenge 2015 by a Dutch 
Municipality. It is composed of 1,199 traces and 52,217 events referring to 
398 activities. The data contains all building permit applications over a 
period of approximately four years. In this case, the business goals to be 
analyzed are defined by the following LTL formulas: 

ϕ21 = F(“start WABO procedure”) ∧ F(“extend procedure term”) 

ϕ22 = G(“send confirmation receipt ” → F(“retrieve missing data”)) 

The first formula assesses that the WABO procedure will eventually start 
and that the procedure term will eventually be extended, while the second 
one states that it always happens that sending the confirmation receipt is 
eventually followed by the retrieval of missing data. 

7.3. Experimental Setting and Procedure 

To evaluate the goodness of the proposed approaches, we proceeded as 
follows: 

we labeled each trace of the datasets according to whether it is com- 
pliant or not with the specified formulas; 5 

 
5We used an automated LTL checker for the labeling. In general, the framework works 

with any type of labeling, including manual categorizations of the traces. 

• 
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we divided the datasets into three different parts: (i) the training set, 
consisting of 70% of the whole dataset, (ii) the validation set account- 
ing for 20% of the dataset, and (iii) the testing set, composed of the 
remaining 10%; 

for each algorithm run, we used the training and validation sets to 
perform the selection of the best framework configuration(s); 

after having identified the best configuration(s), we evaluated them 
using the testing set to measure their performance on unseen data. 

 

The genetic algorithms used in the two approaches have themselves a set 
of parameters (meta-hyperparameters). For the single-objective approach, 
we set the parameters of the genetic algorithm as follows: 

 

Population size of 25 individuals; the choice has been taken as a good 
trade-off between quality of the results and computation time. 

Mutation rate of 0.02, i.e., in the mutation stage only 2% of the 
resulting individuals have the probability to be mutated. A too low 
mutation rate would render this stage useless, and a too high mutation 
rate would be counterproductive to the approach. 

Elitism of 1; elitism is used to speed up the convergence of the algo- 
rithm. Setting the elitism value to 1 means that the individuals with 
the highest fitness score would bypass all the intermediate algorithm 
stages and go straight to the next generation. 

Stagnation value of 10; stagnation value represents the number of 
generations without any improvement in the fitness function that would 
result in the termination of the algorithm. The chosen value should 
allow the algorithm to have enough time to search for better solutions. 

 

For the multi-objective approach, the genetic algorithm was configured 
as follows: 

Population size of 25 individuals, like in the case of the single- 
objective approach. Relying on the same amount of individuals, indeed, 
helps the comparison between the two approaches. 

• 

• 

• 

• 

• 

• 

• 

• 
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Mutation rate of 0.02; this value is also the same as the one chosen 
for the single-objective approach. 

Crossover probability of 0.8; this is the probability that two parents 
are chosen to create offsprings. 

Epochs of 15; differently from the single-objective approach, in this 
case, a maximum number of generations is used for terminating the 
algorithm, rather than a stagnation value. As for the population size, 
this value has been chosen as a good tradeoff between quality of the 
results and computation time. 

 

7.4. Experimental Results 

Below, we report the results of the evaluation for each of the two ap- 
proaches. The results are based on four runs (i.e., the approaches have been 
applied to each of the two datasets and for each of the two business goals, as 
described in Section 7.2). 

 

7.4.1. Single-Objective Approach Experimental Results 

In order to answer the first research question (RQ1.1), we looked at the 
trend of the fitness function for different generation numbers. Figures 7 and 
8 show the values of the fitness function corresponding to the four business 
goals (formulas ϕ11, ϕ12, ϕ21, and ϕ22). The y axis reports the values of the 
fitness function,6 while the x axis reports the generation number. The blue 
line shows the value of the best fitness, the red one the value of the mean 
fitness. 

By analyzing the plots, first, we can observe that the best fitness grows 
over time up to a given generation, indicating that the algorithm progresses 
towards an improvement of the fitness function. Second, we note that there is 
a substantially different trend between the runs executed on the first dataset 
and the ones executed on the second dataset. The plots corresponding to 
the first two business goals (ϕ11 and ϕ12) show that the best fitness starts 
from an initial value of around 80% of the maximum possible value and it 
rapidly reaches a value of around 90% of the maximum value, so that the 
next improvements are only marginal. The other two runs provide, instead, a 

 
6The minimum value for the y axis has been chosen to be 1 instead of 0, in order to 

improve the readability of the plot. 

• 

• 

• 
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Figure 7: Fitness function trend for the BPI Challenge 2011 dataset 
 

Figure 8: Fitness function trend for the BPI Challenge 2015 dataset 
 
 

flatter plot where the best fitness is reached already at the initial generations. 
In particular, in the plot of function ϕ21, we can see that the number of total 
generations is 11, indicating that the best fitness was already found in the 
first generation (the stagnation value for this experiment was set to 10). The 
plot related to ϕ22 reveals a higher number of generations, although the plot 
is still quite flat, indicating only some marginal improvement over time. The 
mean fitness follows the classical trend for both datasets: it starts with a 
score lower than the best fitness and gradually reaches it, though with some 
fluctuations. 

From this analysis, we conclude that the selection of the configuration is 
less critical for the second dataset than for the first one, since for the second 
dataset an initial population of random configurations already leads to the 
highest fitness. Overall, we can answer RQ1.1 by noting that the evolution 
of the fitness depends on the faced business goal and dataset, though for 
the considered datasets and business goals it converges in a small number of 
generations. 



25  

 
 
 

 

Rule 
Validation 

Fitness 
Testing 
Fitness 

Fitness 
Difference 

Metrics 
Validation 

Results 
Testing 
Results 

Metrics 
Difference 

    Accuracy 0.8649 0.7264 -0.1385 
ϕ11 1.8809 1.6952 -0.1858 Failure-Rate 0.0263 0.0702 +0.0439 

    Earliness 0.8477 0.7787 -0.069 
    Accuracy 0.8465 0.8393 -0.0072 
ϕ12 1.8947 1.8689 -0.026 Failure-Rate 0 0.0175 +0.0175 

    Earliness 0.9641 0.9385 -0.0256 
    Accuracy 0.8703 0.9091 +0.0388 
ϕ21 1.9203 1.9591 +0.0388 Failure-Rate 0 0 0 

    Earliness 1 1 0 
    Accuracy 0.9874 0.9504 -0.037 
ϕ22 2.0336 1.9951 -0.0384 Failure-Rate 0 0 0 

    Earliness 0.9234 0.8947 -0.0287 
 

Table 1: Results obtained with the validation and testing sets using the single-objective 
approach 

 
 

In order to answer RQ1.2, we used the configuration computed by opti- 
mizing the fitness function (i.e., the one obtained by balancing accuracy and 
failure-rate on a validation set) on a set of new traces, i.e., the testing set. 
Table 1 reports, for each dataset and business goal, the values of the fitness 
function of the configuration suggested by the algorithm as the best one, i.e., 
the one with the highest fitness in the tuning phase (column Validation Fit- 
ness), as well as the values of the fitness function obtained using the testing 
set (column Testing Fitness). Moreover, the table details the values of the 
configuration metrics used for computing the fitness function obtained with 
the best configuration on the validation set (Validation Results column) and 
on the testing set (Testing Results column). 

Looking at the results, we observe some salient patterns. The testing fit- 
ness values are close to the corresponding validation fitness values: this means 
that the solutions found by the single-objective approach are not overfitting 
the validation sets. Indeed, by looking at the values of the fitness function in 
the validation and in the testing set, we observe that, when the configuration 
is tested on unseen traces, despite a slightly higher decrease in the value of 
the fitness function in the case of ϕ11, the difference between the values of 
tuning and testing fitness function is overall quite low (in the case of ϕ12, 
ϕ21, and ϕ22 the difference is of at most 0.038). By looking more in detail at 
the specific configuration metrics, we observe a similar pattern: between the 
tuning and the testing phase, we notice an increase in the accuracy for ϕ21, 
a slight decrease for ϕ12 and ϕ22 and a more significant decrease (of around 
0.14) for ϕ11. For all the four business goals, the failure-rate shows an in- 
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Rule Accuracy Failure-Rate 
ϕ11 0.875 0.5789 
ϕ12 0.8421 0.6667 
ϕ21 0.9506 0.3306 
ϕ22 0.9829 0.0413 

 

Table 2: Results obtained with the approach in [13] with manually selected hyperparam- 
eters 

 

Rule Objective Metrics 
Validation 

Results 
Testing 
Results 

Metrics 
Difference 

 

 
ϕ11 

Accuracy 
Accuracy 

Failure-Rate 
0.9187 
0.4605 

0.86 
0.5614 

-0.0587 
0.1001 

Failure-Rate 
Accuracy 

Failure-Rate 
0.6009 

0 
0.86 

0 
0.2591 

0 

Balance 
Accuracy 

Failure-Rate 
0.8457 
0.1754 

0.8353 
0.2544 

-0.0104 
0.079 

 

 
ϕ12 

Accuracy 
Accuracy 

Failure-Rate 
0.8931 
0.4254 

0.9516 
0.4561 

0.0585 
0.0307 

Failure-Rate 
Accuracy 

Failure-Rate 
0.75 

0 
0.7321 
0.0175 

-0.0179 
0.0175 

Balance 
Accuracy 

Failure-Rate 
0.7704 
0.0877 

0.8716 
0.0439 

0.1012 
-0.0438 

 

 
ϕ21 

Accuracy 
Accuracy 

Failure-Rate 
0.907 

0.2803 
0.9159 
0.1157 

0.0089 
-0.1646 

Failure-Rate 
Accuracy 

Failure-Rate 
0.8703 

0 
0.9091 

0 
0.0388 

0 

Balance 
Accuracy 

Failure-rate 
0.8703 

0 
0.9091 

0 
0.0388 

0 

 

 
ϕ22 

Accuracy 
Accuracy 

Failure-Rate 
1 

0.1171 
1 

0.2562 
0 

0.1391 

Failure-Rate 
Accuracy 

Failure-Rate 
0.9791 

0 
1 
0 

0.0209 
0 

Balance 
Accuracy 

Failure-Rate 
0.9871 
0.0293 

0.9561 
0.0579 

-0.031 
0.0286 

 
Table 3: Results reported in [10] related to the semi-automatic optimization of the hyper- 
parameters 

 
 

crease of at most 0.044 between the tuning and the testing phase. Finally, 
the earliness score decreases of at most 0.07 from the tuning to the testing 
phase. These considerations indicate that the single-objective approach is 
quite stable across different runs and allows us to effectively find framework 
configurations that give accurate predictions in all executions. 

By relying on the assumption that a generic user of the Genetic-Enhanced 
Predictive Process Monitoring Framework is likely interested in balancing the 
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correctness of the returned predictions and the rate of the non-returned pre- 
dictions, we compared the quality of the obtained configurations in terms 
of accuracy and failure-rate with two state-of-the-art techniques in the con- 
text of the predictive business process monitoring: the on-the-fly approach 
presented in [13] and the semi-automatic approach investigated in [10]. 

The on-the-fly approach [13] builds a classification model on-the-fly in 
order to provide predictions about the achievement of a business goal in 
an execution trace. In particular, at runtime, the approach identifies trace 
prefixes of historical cases with a control flow close to the one of the ongoing 
trace (i.e., trace prefixes that have an edit distance from the current prefix 
lower than a given similarity threshold) and uses these similar prefixes to 
build a decision tree on-the-fly. In other terms, differently from the Genetic- 
Enhanced Predictive Process Monitoring Framework used in this work, no 
clustering phase is carried out, but only a classification technique - decision 
tree learning - is used and its hyperparameters are manually tuned. 

The semi-automatic approach [10], instead, is based, as the current work, 
on the basic Predictive Process Monitoring Framework , which allows for 
avoiding the on-the-fly construction of the classification models by applying 
a clustering pre-processing phase. However, differently from the Genetic- 
Enhanced Predictive Process Monitoring Framework , the technique and hy- 
perparameter selection is performed by manually defining the hyperparame- 
ter search space and by inspecting the returned solutions to choose the best 
one. 

We report,  in Table 2,  the values of accuracy and failure-rate obtained 
by applying the on-the-fly approach with a manual selection of the configu- 
ration that best balances accuracy and failure-rate.7   In Table 3, we report 
the validation and testing values of accuracy and failure-rate obtained using 
the basic Predictive Process Monitoring Framework with the semi-automatic 
selection of the configuration that best optimizes (i) accuracy, (ii) failure- 
rate and (iii) the balance between accuracy,  failure-rate and earliness [10]. 
In both approaches, we used 70% of the original datasets for training and 
10% for testing; in the semi-automatic approach, we also used 20% of the 
datasets for the tuning phase. 

 
7By inspecting the results, we found the hyperparameter values that best balance 

accuracy and failure-rate for the on-the-fly approach. In particular, we set the confidence 
threshold to 0.4, the support to 4, the similarity threshold to 0.5 and the WeKa J48 
confidence pruning and minimum number of instances to 0.6 and 2, respectively. 
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By looking at Table 2, we can observe that the accuracy values obtained 
with the on-the-fly approach are slightly better (up to 0.15 better) than 
the ones obtained on the testing set with the single-objective optimization. 
On the other hand, we can notice that the failure-rate values are very high 
(up to 0.65 higher) compared to the ones obtained with the single-objective 
approach. Therefore, the Genetic-Enhanced Predictive Process Monitoring 
Framework is able to get results that guarantee a better trade-off between 
the two quality metrics. 

By looking at the results obtained with the semi-automatic approach 
(Table 3, balance criterion) and the single-objective approach of the Genetic- 
Enhanced Predictive Process Monitoring Framework , we can observe that 
they are comparable. In particular, in the case of ϕ11, using the validation 
set, we get a slight improvement (of 0.02) in terms of accuracy and also an 
improvement in terms of failure-rate (a decrease of about 0.15), while using 
the testing set, we obtain a worse accuracy (a decrease of 0.11) and a better 
failure-rate (a decrease of around 0.2). In the case of ϕ12, we observe a similar 
trend. The single-objective approach is able to guarantee an increase (of 0.07) 
in the accuracy and a decrease (of 0.09) in the failure-rate for the validation 
set, as well as a slight decrease (of 0.03) of both accuracy and failure-rate for 
the testing set. No differences in terms of results can be observed for ϕ21. In 
the case of ϕ22, while the accuracy remains the same for both validation and 
testing, the failure-rate decreases of about 0.03 for the validation set and of 
about 0.06 for the testing set. To summarize, the single-objective approach is 
able to provide solutions that are better or non-worse than the ones obtained 
with the semi-automatic approach. 

Given these results, we can conclude that the single-objective optimiza- 
tion of the Genetic-Enhanced Predictive Process Monitoring Framework per- 
forms consistently well on the datasets under consideration, presenting test- 
ing results with an accuracy ranging between 0.73 and 0.95 and a failure-rate 
never higher than 0.07. Moreover, the framework is able to provide solutions 
that are better or non-worse than state-of-the-art approaches. A crucial 
aspect of this analysis is that while state-of-the-art approaches require the 
expertise of users in the tuning phase, by using the Genetic-Enhanced Predic- 
tive Process Monitoring Framework , the hyperparameter optimization does 
not require any human intervention. This allows us to positively answer 
RQ1.2. 

In order to answer the third research question (RQ1.3), we evaluated 
the computation time required by the genetic algorithm to return the best 



29  

 
 
 

 
Rule Number of generations Computation time (h) 
ϕ11 20 38.86 
ϕ12 28 33.35 
ϕ21 11 13.35 
ϕ22 21 29.74 

 

Table 4: Computation time (reported in hours) for each business goal required by the 
single-objective approach 

 
 

configuration. Table 4 shows the computation time, expressed in hours, 
required by the algorithm for each run. Looking at Table 4, we can see how 
giving a direct answer to this research question is not straightforward. This 
is because the computation times have a significant variance, depending on 
the time required by the genetic algorithm to find a solution: taking into 
account that the terminating condition of the approach has a stagnation of 
10 epochs, the time required by the algorithm varied a lot for the different 
business goals. For example, for the business goal ϕ21, the solution was 
found in the first generation of individuals, so that the time spent was only 
the time required to generate the successive 10 generations (needed to have 
the stagnation condition met). With ϕ22, the steady increase of the fitness 
values continued to reset the termination condition, requiring ten additional 
generations. 

Comparing ϕ11 and ϕ22, which have almost the same number of gener- 
ations, we can notice that the time spent to find a solution using the first 
dataset is higher than the one spent for the second dataset. A possible cause 
for such a difference can be found in the different sizes of the two datasets, 
as also observed in [10]: indeed, the first dataset contains almost three times 
the number of events contained in the second one. 

Table 5 shows the details of the run using the business goal ϕ12, with the 
time spent for each generation of the algorithm. In particular, we can observe 
that the initial generations have computation times substantially higher than 
the forthcoming ones, and that, in this case, after the fifth generation the 
time spent settles on around 0.59 hours (about 35 minutes) per generation, 
which is a reasonable time for a tuning algorithm. 

Note that, when dealing with datasets that are larger than the ones we 
used in this paper, training and validation for each configuration, can be 
distributed. The execution of each configuration, indeed, is actually inde- 
pendent of the execution of the other configurations of the same generation, 
so that Big Data technologies like Hadoop, Spark and Flink can be used. 
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Generation Computation time (h) Generation Computation time (h) 

0 7.37 14 0.54 
1 8.12 15 0.54 

2 1.27 16 0.55 

3 0.88 17 0.58 

4 1.03 18 0.59 
5 1.75 19 0.61 

6 0.59 20 0.62 

7 0.58 21 0.63 

8 0.56 22 0.63 
9 0.57 23 0.63 

10 0.54 24 0.63 

11 0.55 25 0.63 

12 0.54 26 0.63 
13 0.53 27 0.63 

 

Table 5: Computation time required by the single-objective approach for each generation 
for the business goal ϕ12 

 
Rule Training time (s) Avg. prediction time (ms) 
ϕ11 18.09 0.48 
ϕ12 61.89 0.54 
ϕ21 57.74 8.75 
ϕ22 365.7 230.63 

 

Table 6: Training and testing time required for each business goal (configurations selected 
using the single-objective approach) 

 
 

These observations allow us to positively answer RQ1.3. Overall, we can 
conclude that the single-objective approach is able to identify in a reasonable 
amount of time a (near-optimal) configuration that is able to provide accurate 
predictions (RQ1). 

Once the near-optimal configuration for the specific dataset and business 
goal has been identified by the algorithm, it can be used for training the 
system and making predictions for new unseen traces. Table 6 reports the 
total time required by the system for the training phase, as well as the average 
time required for a single prediction. The results show that training can 
be performed in the order of minutes, while online prediction demands less 
than one second per trace. Once identified the best configuration for a new 
dataset, both the training and the actual online predictions can therefore be 
performed relatively fast. 
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7.4.2. Multi-Objective Approach Experimental Results 

In order to answer RQ.2.1, the plots of the Pareto front returned by 
the multi-objective approach for each business goal are reported. Figures 9 
and 10 show the plot of the Pareto front of the four different runs (with ϕ11, 
ϕ12, ϕ21, and ϕ22). 

By analyzing the shape of the four plots, we can immediately see a sig- 
nificant difference between the plots related to ϕ11 and ϕ12 and the plots 
related to ϕ21 and ϕ22. First, the number of configurations returned for the 
first dataset is much higher than the one returned for the second dataset. 
Second, the points on the Pareto related to the first dataset are more widely 
distributed than the ones related to the second dataset. These two consid- 
erations show that the first dataset provides to the user a wider choice than 
the second dataset on the configurations that best suit her needs. In addi- 
tion, from the plot related to ϕ12, it is evident that, in this case, the set of 
solutions returned by the multi-objective algorithm, which is obtained with 
a higher number of generations, results in a more defined shape of the Pareto 
front. These observations answer RQ2.1. 

As with the single-objective approach, in order to answer RQ2.2, we eval- 
uated the Pareto of configuration solutions obtained with the multi-objective 
approach on a set of unseen traces (testing set). Starting from the Pareto of 
solutions, we selected three different types of configurations: a solution with 
high accuracy, a solution with low failure-rate and a solution balancing the 
two metrics.8 

The first observation that can be done is that the Pareto shape influences 
the choice of the best configuration for a user. In the first two plots, indeed, 
the user would have no difficulties in finding a configuration which satisfies 
her needs, whatever they are (high accuracy, low failure-rate or a trade-off 
between the two). In the latter two plots, instead, the low number of points 
concentrated in the same area constrains the user’s choice. This results in 
solutions that, although selected to optimize different objective functions 
(i.e., maximizing accuracy, minimizing failure-rate or balancing), are very 
similar to each other. This flattening of the solution space already appeared 
in the case of the single-objective approach, which was able to identify the 

 
8In particular, from the Pareto front, we removed the outliers and we selected the point 

with the highest accuracy, the point with the lowest failure-rate and the one that balances 
accuracy and failure-rate. 
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Figure 9: Pareto fronts obtained for the BPI Challenge 2011 dataset 
 

Figure 10: Pareto fronts obtained for the BPI Challenge 2015 dataset 
 
 

best fitness value already at the first generation. 
By looking at the data reported in Table 7, we can analyze the validation 

and testing results obtained using the multi-objective approach. In partic- 
ular, by inspecting the data related to the first two business goals, we can 
notice that the results are overall good, with scores for each configuration 
metric that allow the user to obtain good results, according to the selected 
objective. For example, if we want to target a high accuracy, the solutions 
have an accuracy value of around 0.92 on the validation set that, on the test- 
ing set, decreases for the first business goal (with a difference of about 0.22) 
and increases for the second one (the difference is of around 0.02). A similar 
trend can also be observed for the failure-rate: for the first business goal, 
we have an increase, while for the second one a marginal decrease. Looking 
at the solutions focusing on the best failure-rate, we can observe a slight 
variation of the accuracy and of the failure-rate from the validation to the 
testing set (in the order of few hundredths). Only a slight difference exists 
between the validation set and the testing set also when considering as target 



33  

 
 
 

 

Rule Objective Metrics 
Validation 

Results 
Testing 
Results 

Metrics 
Difference 

 

 
ϕ11 

Accuracy 
Accuracy 

Failure-Rate 
0.9219 
0.3816 

0.7069 
0.4912 

-0.2151 
+0.1096 

Failure-Rate 
Accuracy 

Failure-Rate 
0.8009 
0.0088 

0.7632 
0 

-0.0377 
-0.0088 

Balance 
Accuracy 

Failure-Rate 
0.8578 
0.0075 

0.8286 
0.0789 

-0.0292 
+0.0044 

 

 
ϕ12 

Accuracy 
Accuracy 

Failure-Rate 
0.9231 
0.6009 

0.94 
0.5614 

+0.0169 
-0.0395 

Failure-Rate 
Accuracy 

Failure-Rate 
0.7181 
0.0044 

0.7387 
0.0263 

+0.0206 
+0.0219 

Balance 
Accuracy 

Failure-Rate 
0.8798 
0.1974 

0.8539 
0.2193 

-0.0259 
+0.0219 

 

 
ϕ21 

Accuracy 
Accuracy 

Failure-Rate 
0.8947 
0.1255 

0.9068 
0.0248 

-0.012 
-0.1007 

Failure-Rate 
Accuracy 

Failure-Rate 
0.8703 

0 
0.9091 

0 
+0.0388 

0 

Balance 
Accuracy 

Failure-Rate 
0.8947 
0.1255 

0.9068 
0.0248 

+0.0121 
-0.1007 

 

 
ϕ22 

Accuracy 
Accuracy 

Failure-Rate 
0.9867 
0.0586 

1 
0.1653 

+0.0133 
+0.1067 

Failure-Rate 
Accuracy 

Failure-Rate 
0.9791 

0 
0.9669 

0 
-0.0121 

0 

Balance 
Accuracy 

Failure-Rate 
0.9831 
0.0084 

0.9339 
0 

-0.0492 
-0.0084 

 

Table 7: Results obtained with the validation and testing sets using the multi-objective 
approach 

 
 

the balance of the two metrics. Overall, except for the accuracy value of the 
first business goal when optimizing on the accuracy, only minor variations 
can be observed between validation and testing results. Therefore, we can 
assess that, for the first dataset, the results obtained in the testing phase are 
quite close to the ones obtained in the tuning phase. 

If we analyze the other two business goals, we can observe that, for both 
validation and testing sets, the accuracy values range between 0.87 and 1, 
while the failure-rate scores are very close to zero. By inspecting the solutions 
that look at a high accuracy, we can notice some fluctuations between the 
validation and the testing results in terms of failure-rate (increasing up to 
0.11 for ϕ22) from the tuning to the testing phase. When considering as target 
a low failure-rate, the results are satisfactory both in terms of accuracy and 
of failure-rate. Finally, when focusing on configurations able to balance the 
two metrics, the testing results show either improvements with respect to 
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the validation results or only slight variations. Also in this second dataset, 
therefore, except for few cases, validation and testing results do not present 
significant differences. 

We compared the results obtained with the multi-objective approach of 
the Genetic-Enhanced Predictive Process Monitoring Framework with the 
ones obtained with the on-the-fly approach [13] and with the semi-automatic 
approach [10]. Again, we used accuracy and failure-rate for evaluating the 
quality of the predictions. 

In particular, we compared the results of the on-the-fly approach, whose 
hyperparameters have been manually tuned (Table 2), with the ones obtained 
with the multi-objective approach by balancing the accuracy and the failure- 
rate in the testing phase. We can observe that the multi-objective approach 
is able to produce solutions that either dominate or improve in one of the 
two objectives the solutions of the on-the-fly approach. However, while the 
improvement in terms of failure-rate decrease is on average in the order of few 
tenths, the decrease in terms of accuracy is always in the order of hundredths. 
As for the single-objective approach, therefore, we can assess that also the 
solutions obtained with the multi-objective approach are non-worse than the 
solutions obtained with the on-the-fly approach. 

We also compared the results obtained with the multi-objective approach 
of the Genetic-Enhanced Predictive Process Monitoring Framework with the 
ones obtained with the semi-automatic approach [10]. In particular, we com- 
pared accuracy and failure-rate values of the solution provided by the multi- 
objective approach maximizing the accuracy (resp. failure-rate and balanc- 
ing the two objectives) with the ones of the solution obtained with the basic 
Predictive Process Monitoring Framework by manually inspecting different 
configurations and selecting the one that maximizes accuracy (resp. failure- 
rate and balancing the two objectives). By looking at the differences between 
the results in Table 3 and those in Table 7, we can notice that, except for one 
case, the multi-objective approach always improves the validation results at 
least in one of the objectives. In the validation set, indeed, we find that the 
accuracy increases, or the failure-rate decreases, or both the objectives are 
improved. The only exception is the solution optimizing the failure-rate for 
ϕ12, although the difference between the two values is marginal (a decrease 
of 0.03 for the accuracy and an increase of 0.004 for the failure-rate). We can 
observe that, also in the testing results,  for more than half of the settings, 
at least one of the two objectives is improved by using the multi-objective 
approach. For all the remaining cases, the difference between the values of 
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Rule Computation time (h) 
ϕ11 51.32 
ϕ12 65.28 
ϕ21 42.42 
ϕ22 18.49 

 

Table 8:  Computation time (reported in hours) required by the multi-objective approach 
for each business goal 

 
Generation Computation time (h) Generation Computation time (h) 

0 6.36 8 2.81 

1 1.93 9 4.07 

2 2.92 10 2.26 

3 1.99 11 3.69 
4 1.67 12 2.70 

5 2.44 13 2.18 

6 2.63 14 2.26 

7 2.49   

 

Table 9: Computation time required by the multi-objective approach for each generation 
for the business goal ϕ21 

 
 

accuracy and failure-rate is marginal (always lower than 0.18). Therefore, 
we can assess that also in the multi-objective case, the obtained results are 
quite close to the ones obtained with the semi-automatic approach. 

To sum up, the results returned by the multi-objective approach of the 
Genetic-Enhanced Predictive Process Monitoring Framework are in line with 
the selected criteria and do not reveal significant differences between the 
validation and the testing results, thus indicating that the solutions found 
are reliable and could be used in new unseen cases with good confidence. 
Furthermore, the obtained results are comparable with the results obtained 
with state-of-the-art approaches, which, however, demands for human inter- 
vention and expertise in the tuning phase. These observations allow us to 
positively answer RQ2.2. 

Answering RQ2.3 requires an analysis of the computation time for each 
business goal shown in Table 8. Comparing these results with the ones ob- 
tained with the single-objective approach, we can notice how, except for ϕ22, 
all the computation times are notably higher in the multi-objective case. 

In order to give a better picture of the internal computation times, Table 9 
shows the time spent for each generation of the run involving the business 
goal ϕ21. We observe that, as in the single-objective approach, the time spent 
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Rule Objective Training time (s) Avg. prediction time (ms) 

 

ϕ11 

Accuracy 28.63 12.54 
Failure-Rate 30.07 1.23 

Balance 19.53 2.75 
 

ϕ12 

Accuracy 348.91 1915.14 
Failure-Rate 56.09 1.36 

Balance 30.35 3.21 
 

ϕ21 

Accuracy 108.24 272.74 
Failure-Rate 1024.76 24.67 

Balance 222.9 25.98 
 

ϕ22 

Accuracy 117.84 110.74 
Failure-Rate 1058.73 25.6 

Balance 768.45 0.25 
 

Table 10: Training and testing time required for each business goal (configurations selected 
using the multi-objective approach) 

 
 

for the first generation is higher than the ones spent for all the others. This 
may be due to the initial setting of the algorithm that requires some time, 
or to the framework initialization. For all the other generations, we have a 
computation time of about 2.7 hours (~2 hours an 45 minutes), though with 
some variations across the generations. 

Also in the case of the multi-objective approach, the scalability can be 
improved for possibly larger datasets by exploiting Big data technologies 
like Apache Hadoop, Spark or Flink. Indeed, training and validation of the 
different configurations, which are the most time consuming parts of the 
approach, can be distributed. 

We can therefore conclude that, although more expensive than the single- 
objective approach in terms of time spent, the multi-objective approach re- 
quires an average time per generation that is reasonable for a task such as 
the hyperparameter selection, thus allowing us to answer RQ2.3 positively. 
Overall, we can conclude that the multi-objective approach is able to pro- 
vide users with a set of near-optimal but suitable framework configurations, 
from which they can select the one(s) that best suit their requirements. The 
execution times of the approach are in the order of a few hours, which is 
suitable for overnight processing. Given that the selection of the instance 
framework does not need to be performed frequently and may even be a one-
off operation for a given dataset, this performance is within manageable ranges 
(RQ2). 

Also in the case of the multi-objective approach, once one or more con- 
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figurations for the specific dataset and business goal have been selected, they 
can be used for training the system and making predictions for new unseen 
traces. Table 10 reports the total time required by the system for the train- 
ing phase and the average time required for a single prediction for each of 
the three types of configuration (the one with high accuracy, the one with 
low failure-rate and the one balancing the two metrics). The results show 
that training can be performed in at most 20 minutes, while online predic- 
tion demands for less than two seconds per trace. The difference in terms 
of performance can mainly be ascribed to the clustering algorithm selected. 
When dbscan is used, the prediction time is higher (in the case of accuracy 
optimization for ϕ12, in all the optimizations for ϕ21 and in the cases of ac- 
curacy optimization and failure-rate optimization for ϕ22). Therefore, once 
identified the best configuration for a new dataset, both the training and the 
actual online predictions can be performed in an amount of time that is still 
reasonable. 

7.5. Summary and discussion 

To sum up, both the investigated approaches provide high quality results 
without requiring human intervention in the selection of the most suitable 
techniques and in the hyperparameter tuning for a given dataset. More- 
over, the time required by the two proposed approaches for the selection of 
the most suitable configuration is still reasonable for real-life datasets. By 
comparing the two proposed approaches, it is clear that the multi-objective 
approach requires higher execution times than the single-objective approach 
though this was expected since the multi-objective approach provides a richer 
output. 

 

7.6. Threats to Validity 

Despite the effort spent to generate a set of results that are not biased by 
external factors that would reduce their validity, some aspects of this work 
are prone to this kind of problems. Three main threats affect the validity of 
the presented results: (i) potential overfitting, (ii) limited number of datasets 
and business goals used, and (iii) fixed number of generations in the multi- 
objective approach. 

The lack of a cross-validation testing during the tuning phase could cause 
a potential overfitting of the solutions, thus potentially implying a reduction 
of the performance of the approaches on unseen data. Nevertheless, the 
narrow differences existing between validation and testing results in most of 
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the cases and for both approaches, suggest that the models, in general, do 
not overfit the validation sets. 

Concerning the second threat, the approach would have benefit of a wider 
experimentation. Indeed, it has been applied to two datasets and to two 
business goals only for each dataset. This threat is mitigated by the fact 
that the two datasets are real-life ones and the investigated business goals 
are realistic problems that a user could be interested in. 

Finally, in the case of the multi-objective approach, the number of gen- 
erations is fixed: this could generate Pareto fronts that are incomplete or 
that have not yet reached the convergence (as happened in the first business 
goal of Figure 7), thus returning a set of configurations that could be not yet 
the best one. Nevertheless, the results obtained with such a fixed number of 
generations are still satisfactory. 

 
8. Related Work 

Two bodies of previous work are related to this paper: those concerning 
predictive business process monitoring and those related to hyperparameter 
optimization. 

As for the first branch, we can classify the existing works based on the 
techniques used for making predictions. Some of the works existing in the 
literature rely on lazy approaches like Case-Based Reasoning (CBR), i.e., 
they use past data to make predictions in a lazy way; other works rely on 
eager approaches. 

In the former group, we mainly find applications of CBR in the healthcare 
domain [39, 40] and in the industrial domain [41] (e.g., in the context of 
predictive maintenance). In the second group, instead, we find several works 
related to predictions in the process monitoring field. Eager approaches can 
be further classified based on the type of generated predictions. 

A first category deals with approaches for time-based predictions. In [14], 
the authors present a family of approaches in which annotated transition 
systems, containing time information extracted from event logs, are used to: 
(i) check time conformance, (ii) predict the remaining processing time, and 
(iii) recommend appropriate activities to end users. In [15], an ad-hoc clus- 
tering approach for predicting process performance measures is presented, 
in which context-related execution scenarios are discovered and modeled 
through state-aware performance predictors. In [16], stochastic Petri nets are 
used to predict the remaining execution time of a process. In [42], the authors 



39  

 
 
 
 

present a method for predicting the remaining processing time that relies on 
a bi-dimensional feature space. The first dimension expresses intra-case de- 
pendencies, while the second dimension represents inter-case dependencies 
capturing the interplay of all running cases. 

Other works in the predictive business process monitoring literature fo- 
cus on approaches that generate predictions and recommendations to reduce 
risks. For example, in [17], the authors present a technique to support pro- 
cess participants in making risk-informed decisions with the aim of reducing 
process failures. In [18], the authors make predictions about time-related 
process risks by identifying and exploiting statistical indicators that high- 
light the possibility of transgressing deadlines. In [19], an approach for Root 
Cause Analysis through classification algorithms is presented. 

A third group of approaches in the process monitoring field predicts the 
outcome (e.g., the satisfaction of a business objective) of a process. In [13] 
an approach is introduced, which is able to predict the fulfillment (or the 
violation) of a boolean predicate in a running case, by looking at: (i) the se- 
quence of activities already performed in the case; and (ii) the data payload 
of the last activity of the running case. The approach, which provides accu- 
rate results at the expense of a high runtime overhead, has been enhanced 
in [1] by introducing a clustering preprocessing step in which cases sharing a 
similar activity history are clustered together. A classifier for each cluster is 
trained with the data payload of the traces in the cluster. In [23], the authors 
compare different feature encoding approaches where traces are treated as 
complex symbolic sequences, i.e., sequences of activities each carrying a data 
payload consisting of attribute-value pairs. In [43], the approach in [23] has 
been extended by clustering the historical traces before classification. In [44], 
unstructured information contained in text messages exchanged during pro- 
cess executions has been leveraged for improving the prediction accuracy. 
In [20], a comparison of the existing outcome-based predictive monitoring 
approaches is presented. 

A key difference between these approaches and the approach presented 
in this paper is that we provide a general, customizable framework for pre- 
dictive business process monitoring that is flexible and can be implemented 
in different variants with different sets of configurable techniques. Given 
the high number of possible resulting configurations, the Genetic-Enhanced 
Predictive Process Monitoring Framework also supports users in the tuning 
phase. 

Recently, a few studies have investigated the use of deep learning tech- 
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niques – specifically techniques based on LSTM neural networks – to tackle 
predictive process monitoring problems such as predicting the next event in 
a trace, and the timestamp of the next event, or predicting the remaining 
time until completion of an ongoing case [45, 46, 47]. These studies have 
shown that when the datasets are large, deep learning techniques can out- 
perform techniques based on classical machine learning techniques. Since the 
aim of this paper is to provide a framework that auto-tunes itself to different 
datasets (including smaller datasets), we do not consider the possibility of 
using deep learning techniques. However, the framework is designed in such 
a way that it can be used in conjunction with deep learning classifiers. 

Regarding the works related to hyperparameter optimization, several ap- 
proaches in machine learning have been proposed for the selection of a learn- 
ing algorithm [48], for the tuning of hyperparameters [49], and for the com- 
bined optimization of both the algorithm and the hyperparameters [5]. The 
problem we address in this paper is to tune both the machine learning algo- 
rithm and the hyperparameter values. One of the first works falling in the 
same category is Auto-WEKA [5]. The idea of this work is to map the prob- 
lem of algorithm selection to that of hyperparameter optimization and to 
approach the latter problem based on a sequential model-based optimization 
and a random forest regression model. MLbase [50] also addresses the same 
problem as Auto-WEKA and approaches it using distributed data mining 
algorithms. 

Differently from these approaches, the problem that we face in this work 
is more complex. Indeed, in the predictive monitoring of business processes, 
we have to deal with predictions over complex symbolic sequences. There- 
fore, we have more than one sub-problem (e.g., clustering and classification) 
and these sub-problems depend on each other. Therefore, the algorithm (and 
hyperparameters) optimization for a sub-problem cannot be defined indepen- 
dently of the other. In this scenario, genetic algorithms represent a solution 
that guarantee a good the quality of the results and reasonable execution 
times. Other works in the literature use evolutionary algorithms in the con- 
text of classification problems. For instance, in [7, 8], genetic algorithms 
have been used for the automatic tuning of SVM hyperparameters.  In [9], 
a genetic algorithm has been used for the hyperparameter optimization of 
neural networks. In [51], a hyper-heuristic evolutionary algorithm has been 
proposed for evolving design components of top-down decision tree induc- 
tion algorithms according to the specific classification dataset considered. A 
hybrid learning methodology that integrates genetic algorithms and decision 
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tree learning is introduced in [52], where optimal sub-sets of discriminatory 
features are evolved for robust pattern classification. 

 
9. Conclusion 

We have presented a framework for predictive business process monitor- 
ing armed with two hyperparameter optimization techniques. The proposed 
techniques rely on genetic algorithms to scalably search through the hyper- 
parameter space in order to identify configurations that either maximize a 
single-objective function, or compute Pareto fronts from which the user can 
select a given configuration depending on the desired tradeoffs. In particular, 
we have shown how genetic algorithms can be successfully used to solve two 
combined sub-problems: clustering (needed to extract information from the 
control flow perspective of business process executions) and classification (to 
get information from the data payloads attached to each event). Then, we 
have demonstrated that the customized genetic algorithms allow us to (i) 
reduce the execution times for hyperparameter optimization, and (ii) find a 
balance in the optimization of the different dimensions that are involved in 
the predictive monitoring task (e.g., accuracy, earliness, and failure-rate). 

We have documented and supported the suitability of the proposed frame- 
work through an extensive experimentation by comparing it with all existing 
alternatives. The results confirm the scalability of the approach and its abil- 
ity to identify accurate and reliable framework configurations. 

In the experimentation, we have focused on predicting binary outcomes 
(e.g., a case can be positive or negative).   An avenue for future work is to 
design similar frameworks for other types of predictive process monitoring 
tasks, such as predicting the remaining time or the cost of a case, predicting 
the next activity(ies) in a case, or estimating the probability that a given ac- 
tivity will be executed as a part of an ongoing case [53]. Moreover, it would 
be interesting to apply the same approach for hyperparameter optimization 
in the cases of multi-class (i.e., when traces can be classified using more than 
two classes) and multi-labeling (i.e., when the same trace can be associated 
to more than one label) classification, so as to investigate how the framework 
behaves when using these types of algorithm (e.g., whether the convergence 
of the genetic algorithm is slower than in the case of binary classification). 
Furthermore, other evolutionary techniques can be explored in order to eval- 
uate their advantages and drawbacks with respect to the use of genetic algo- 
rithms. Finally, another avenue for future work is that of instantiating the 
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proposed framework using other machine learning techniques. For example, 
deep learning approaches can be used when dealing with large datasets or 
when temporal features have to be taken into consideration since they are 
proven to be more efficient for handling complex temporal relations [54, 55]. 

Acknowledgments. This research is partly supported by the Estonian 
Research Council (grant IUT20-55). 

 
References 

[1] C. Di Francescomarino, M. Dumas, F. M. Maggi, I. Teinemaa, 
Clustering-based predictive process monitoring, IEEE Transactions on 
Services Computing PP (99) (2017) 1–1. doi:10.1109/TSC.2016. 
2645153. 

[2] M. Federici, W. Rizzi, C. D. Francescomarino, M. Dumas, C. Ghidini, 
F. M. Maggi, I. Teinemaa, A ProM operational support provider for 
predictive monitoring of business processes, in: Proceedings of the BPM 
Demo Session 2015, CEUR-WS.org, 2015, pp. 1–5. 

[3] J.  Bergstra,  R.  Bardenet,  Y.  Bengio,  B.  Kégl,  Algorithms  for  hyper- 
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