The enactment of business processes is generally supported by information systems that record data about each process execution (a.k.a. case). This data can be analyzed via a family of methods broadly known as process mining. Predictive process monitoring is a process mining technique concerned with predicting how running (uncompleted) cases will unfold up to their completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate will be fulfilled upon completion of a running case. The framework takes into account both the sequence of events observed in the current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes of previous (completed) cases are clustered according to control flow information. Secondly, a classifier is built for each cluster using event data attributes to discriminate between cases that lead to a fulfillment of the predicate under examination and cases that lead to a violation within the cluster. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment of cancer patients in a large hospital.
Clustering-Based Predictive Process Monitoring
Di Francescomarino, Chiara;
2016-01-01
Abstract
The enactment of business processes is generally supported by information systems that record data about each process execution (a.k.a. case). This data can be analyzed via a family of methods broadly known as process mining. Predictive process monitoring is a process mining technique concerned with predicting how running (uncompleted) cases will unfold up to their completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate will be fulfilled upon completion of a running case. The framework takes into account both the sequence of events observed in the current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes of previous (completed) cases are clustered according to control flow information. Secondly, a classifier is built for each cluster using event data attributes to discriminate between cases that lead to a fulfillment of the predicate under examination and cases that lead to a violation within the cluster. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment of cancer patients in a large hospital.File | Dimensione | Formato | |
---|---|---|---|
Clustering-Based Predictive Process Monitoring.pdf
accesso aperto
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.