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Clustering-Based Predictive Process Monitoring 

Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maria Maggi and Irene Teinemaa 

 
Abstract—The enactment of business processes is generally supported by information systems that record data about each process 

execution (a.k.a. case). This data can be analyzed via a family of methods broadly known as process mining. Predictive process 

monitoring is a process mining technique concerned with predicting how running (uncompleted) cases will unfold up to their 

completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate 

will be fulfilled upon completion of a running case. The framework takes into account both the sequence of events observed in the 

current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes 

of previous (completed) cases are clustered according to control flow information. Secondly, a classifier is built for each cluster using 

event data attributes to discriminate between cases that lead to a fulfillment of the predicate under examination and cases that lead to 

a violation within the cluster. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the 

corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment 

of cancer patients in a large hospital. 

 
Index Terms—process mining, predictive monitoring, sequence classification, clustering 

✦ 

1 INTRODUCTION 

ROCESS mining is a family of methods to analyze 
business processes based on their observed behavior 

recorded in event logs. In this setting, an event log is a 
collection of traces, each representing one execution of the 
process (a.k.a. a case). A trace consists of a sequence of times- 
tamped events, each capturing the execution of an activity. 
Each event may carry a payload consisting of attribute-value 
pairs such as the resource(s) involved in the execution of the 
activity, or other data recorded with the event. 

Predictive business process monitoring [1] is a cate- 
gory of process mining methods that aims at predicting at 
runtime and as early as possible the outcome of ongoing 
cases of a process given their uncompleted traces. In this 
context, an outcome of a case may be the fulfillment of a 
constraint on the cycle time of the case, the validity of a 
temporal logic constraint, or any predicate over a completed 
case. For example, in a sales process, a possible outcome 
may be the placement of a purchase order by a potential 
customer, while the corresponding negative outcome is the 
non-placement of a purchase order. Meanwhile, in a medical 
treatment process, a possible outcome is the recovery of 
the patient upon completion of the treatment, while the 
corresponding negative outcome is the non-recovery of the 
patient after that given treatment. These examples illustrate 
that the problem of predictive process monitoring is a prob- 
lem of early sequence classification [2]: given a trace of an 
uncompleted case (which can be modeled as a sequence of 
events with data payloads), we seek to predict as early as 
possible whether the outcome of the case will fall into a 
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positive class or a negative class.1 

In previous work [1], we presented a predictive pro- 
cess monitoring method where a classifier is constructed at 
runtime to predict the outcome of an ongoing case of the 
process. However, while achieving a relatively high level of 
accuracy, this method incurs a significant runtime overhead 
– in the order of seconds or even minutes per prediction – 
making it inapplicable in settings with high throughput or 
when instantaneous response times are required. The slow 
response times are due to the fact that the classifier used for 
predicting the outcome of a given case is built at runtime. 

This paper presents an alternative approach that sig- 
nificantly reduces the runtime overhead while maintaining 
a comparable accuracy. The crux of the approach  is  to 
build the classifiers offline, so that the runtime step consists 
simply in matching an uncompleted trace (prefix) to a given 
classifier and applying the latter to make a prediction. The 
offline component follows a two-phase approach. First, pre- 
fixes of traces of historical cases are extracted and clustered 
without looking at the event payloads, so that existing 
methods for trace clustering can be applied. Secondly, for 
each such cluster, a classifier is constructed now taking into 
account the payload (i.e., the data attributes) associated to 
the events in the trace prefixes. The classifier is targeted 
at discriminating between trace prefixes that lead to ful- 
fillments of the monitored predicate vs. those that lead to 
violations. Finally, the online phase consists in taking the 
uncompleted trace of a running case, matching it to a cluster, 
and applying the corresponding classifier to estimate the 
probability of fulfillment of the monitored predicate. 

The proposed approach is wrapped as a generic frame- 
work that can be instantiated by selecting three input 
methods: (i) a method for encoding traces in the event 
log as feature vectors; (ii) a clustering method; and (iii) a 

 
1. In principle, we could also consider a larger set of classes (not 

just two). In this paper, we focus on binary classification, but the same 
techniques could be applied to N-ary classification. 

• 

• 
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classification method. The proposed PM Framework has been 
implemented in the ProM process mining toolset, specifi- 
cally in the Operational Support (OS) environment [3], [4], 
[5]. This latter environment takes as input a stream of events 
(e.g., produced by an enterprise system) and updates a set 
of predictions for each new incoming event. 

Using   an   event   log   of   a   patient   treatment   process 
in a hospital, we have   evaluated   four   instantiations   of 
the PM Framework, corresponding to two feature encod- 
ings (frequency-based and sequence-based) , two clustering 
methods (model-based clustering and DBSCAN) and two 
classification methods (decision trees and random forests). 
These instantiations of the framework are compared in 
terms of their ability to consistently produce predictions 
early, accurately and with low runtime overhead. 

The paper is structured as follows. Section 2 introduces 
the proposed framework. Section 3 presents the experi- 
mental evaluation. Section 4 discusses related work and 
Section 5 draws conclusions and directions for future work. 

2 PREDICTIVE MONITORING  FRAMEWORK 

The goal of predictive monitoring is to determine if a current 
running trace will reach a given outcome based on historical 
traces. Hence, like other process monitoring techniques, our 
framework (herein called the PM Framework) requires a 
labeling function that, given a trace, tells us if it is normal 
or deviant. Accordingly, the PM Framework takes as input 

both an event log and a labeling function fc. The labeling 
function can be defined, for example, using Linear Temporal 
Logic (LTL) rules, as discussed later. 

In this section, we first introduce an illustrative example. 
We then describe an “on-the-fly” approach for predictive 
monitoring presented in [1], which we use as baseline. 
Finally, we introduce the proposed PM Framework. 

2.1 Running Example 

In Fig. 1, we show examples of executions pertaining to 
a patient diagnosis process. In trace t1, a message with a 

diagnosis request (M ) arrives. The request contains a list of 
patient’s symptoms, e.g., painA. The patient is required to 
do some clinical analysis (A) and, once the results of the 

analysis are received, the reception is confirmed (C). Then, 
a diagnosis is made by the doctor (D), e.g., d1, and again 
two times some new clinical analysis is required. After that, 
the hospital fee is paid by the patient (P ), a new diagnosis 
is made by the doctor and the reception of the analysis is 
confirmed. Finally the patient recovers from the disease (R). 

Data consumed  and  produced  in  the  process  is  glob- 
ally visible throughout the whole process execution in the 
form of attribute:value pairs carried by event payloads. The 
payload of an event, signaling the execution of an activity 
A, contains the values of each attribute after the execution 

of A as well as the values of attributes for each activity 
that occurred before activity A in the trace. For example, 
in Fig. 1, the payload associated to the doctor diagnosis ac- 
tivity (D) contains the values associated to attributes of the 
diagnosis activity, e.g., the diagnosis (dia) and possibly the 

prescription (pre) of the doctor, as well as those associated 
to past activities, e.g., patient’s symptoms (sym). We write 

P (D) =  sym : painA, dia : d1, pre : p1, ... to refer to the 

payload of activity D. 

 

 

Fig. 1: Patient diagnosis example. 

 

 

Fig. 2: On-the-fly predictive monitoring. 

 

 
2.2 On-the-fly Predictive Monitoring 

In this section, we report the details of the approach pre- 
sented in [1]. This approach builds classification models on- 
the-fly at runtime based on historical trace prefixes of com- 
pleted cases to provide predictions about the fulfillments of 
a predicate in a running trace. In the following, we report 
an overview of the approach and of its implementation. 

Fig. 2 sketches the approach. It relies on two main 
modules: a Trace Processor module to filter (past) execution 
traces and a Predictor module, which uses the information 
contained in the Trace Processor output as training data to 
provide predictions. Both modules operate at runtime. 

The Trace prefix-based Filtering submodule of the Trace 
Processor module extracts from the set of historical traces 
only those traces having a prefix control flow similar to 
the one of the running trace (up to the current event). The 
filtering is needed since traces with similar prefixes are more 
likely to have, eventually in the future, a similar behavior. 
The similarity between two traces is evaluated based on 
their string-edit distance. We use this abstraction (instead 
of considering traces with a prefix that perfectly matches 
the current partial trace) to guarantee a sufficient number 
of examples to be used for the decision tree learning. In 
particular, a similarity threshold can be specified to include 
more traces in the training set (by considering also the ones 
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yes (2.0/1.0) no (2.0) no (1.0) 

 
Fig. 3: Example decision tree. 

 

that are less similar to the running trace). 
The traces of the training set (and the corresponding 

selected prefixes) are then passed to the Data Encoding sub- 
module, in charge of preparing them to be used for training 
a decision tree. Specifically, the submodule (i) classifies each 
(completed) trace based on whether the desired predicate is 
satisfied or not (this is done by using the input classification 
function fc); (ii) identifies for each trace prefix the payload 
containing the assignment of values for each attribute cor- 
responding to the last event in the prefix. The encoding of 
the trace is then obtained by combining the value of the 
classification function on the specific trace and the trace 
payload. For example, given the trace t1 in Fig. 1, and its 

prefix M, A, C, D , the payload of D  is  taken.  In  partic- 
ular, assuming that we have the vector of data attributes 
sym, dia, pre, treat , the encoding for the specific trace 

prefix will be the vector painA, d1, p1, ?, yes , where the 
question mark is used to identify not available data values, 
while the last value represents the value of the classification 
function fc on the specific case. In this example, it represents 

the fact that the patient in the historical trace t1 recovered 
from the disease. 

Once the relevant traces and, therefore, the correspond- 
ing payloads, are classified and encoded, they are passed to 
the Decision tree learning module, in charge of deriving the 
learned decision tree. The decision tree is queried using the 
payload of the running trace to derive a prediction. Fig. 3 
shows a decision tree related to our running example. The 
non-terminal nodes of the tree contain the decision points 
for the prediction (the data attributes in our case), while 
the arcs are labeled with possible values assigned to the 
attribute in the node. The leaves, instead, represent the 
value of the classification function on the specific path tree. 
The number of data training examples (with values of the 
input variables following the path from the root to each 
leaf), respectively correctly and non-correctly classified, is 
reported on the corresponding leaf of the tree. For example, 
if the payload of the current execution trace corresponds to 

values painB, d1 and p1, the resulting class is the formula 

satisfaction (“yes”), with 2 examples of the training set 
following the same path correctly classified (class support) 
and 1 non-correctly classified, i.e., with a class probability 

Fig. 4: PM Framework. 

 

probability prob  = 0.66. Note that if a path from the root 
to a leaf of the tree cannot be identified starting from the 
payload of the current execution trace (e.g., if some data is 
missing) no prediction can be returned. 

 
2.3 Clustering-Based Predictive Monitoring 

Differently from the approach described in the previous sec- 
tion, in the proposed framework, the on-the-fly construction 
of the decision tree can be avoided by applying a simple pre-
processing phase. In such a phase, state-of-the-art ap- 
proaches for clustering and classification are applied to the 
historical data in order to (i) identify and group historical 
trace prefixes with a similar control flow (clustering from a 
control flow perspective); and (ii) get a precise classification 
based on the data of traces with similar control flow (data- 
based classification). At runtime, the classification of the 
historical trace prefixes is used to classify new traces during 
their execution and predict how they will behave in the 
future. The overall picture of the framework is illustrated 
in Fig. 4. In the following, we describe each framework 
component in detail. 

 
2.3.1 Control flow encoding 

Before applying state-of-the-art techniques for clustering 
and classification, two propaedeutical steps are applied: (i) 
the selection of the historical trace prefixes to consider; and 
(ii) their encoding. In particular, prefixes of past execution 
traces are selected (rather than the entire trace or all the pre- 
fixes for a trace). The reason behind this choice is twofold: 
on the one side, taking all the prefixes could become very 
expensive in terms of efficiency.  On  the  other  side,  we 
are interested in early predictions, when still reparative 
actions can be undertaken to prevent violations. In this light, 
considering only the initial parts of the historical traces 
seems to be a reasonable choice. For example, given the 
6 traces t1, . . . , t6 of Fig. 1, only a selection of k prefixes 
for each trace will be considered. Different approaches can 
be used for the selection of these k prefixes. For example, 

the first k prefixes of each historical trace can be selected 

or alternatively k prefixes, one every g events. In the latter 

case, two prefixes differ one from another for a gap of g 
events.2 Different approaches can also be taken to perform 
the encoding of trace prefixes for clustering. Just to name a 

prob =   2     = 0.66. Therefore, in this case, the Predictor 
will predict  the  satisfaction  of  the  formula  with  a  class 2. k and g are user-specified parameters. 

sym 

painA painB 

dia dia 

d1 d2 d1 d2 

pre 

yes (2.0) no (1.0) no (3.0) 
p1 p2 p3 
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few, a trace (prefix) can be encoded as a sequence of events 
or in terms of the frequency of the occurrence of sequence 
patterns in the trace. The simplest case is the one related to 
the occurrence of unary patterns, i.e., patterns composed of 
a single log event. For example, in the scenario in Fig. 1, 
we can represent the alphabet of the events as an ordered 

vector L = A, C, D, M, P, R, S, V  . In this case, trace t1 will 

be encoded as a vector of frequencies 3, 2, 2, 1, 1, 1, 0, 0 , 
obtained by replacing each symbol of the alphabet in vector 
L by its frequency in trace t1. Trace prefixes encoded in this 
way are used as input of the clustering phase. 

 
2.3.2 Clustering 

In the clustering phase, a selection of prefixes of the his- 
torical traces with the same (control flow) characteristics is 
grouped together based on some distance notion. Examples 
of distances are Euclidean distance and the string-edit dis- 
tance. The historical traces contained in each cluster are then 
used to generate a classifier, that is exploited, in turn, to 
make predictions on running traces, once identified their 
matching cluster. For example, the execution traces in Fig. 1 
could be grouped by a clustering algorithm in two clusters 
c1 and c2, according to the similarities in their control flow, 
so that c1 contains traces t1 and t3 (which have a very 
similar control flow), and c2 contains the remaining four 
traces. 

 
2.3.3 Trace encoding 

Trace prefixes in each cluster are used as input for super- 
vised learning. In this case, the data perspective is taken 
into consideration. Historical execution traces are encoded 
using the available data attributes in the event payloads, 
i.e., prefixes clustered based on control flow are now an- 
alyzed from a data perspective. Similarly to the on-the-fly 
approach, each prefix is encoded as a feature vector that 
includes elements corresponding to the data assignments 
contained in the payload associated to the last event of the 
prefix. In addition, each prefix in a cluster is classified based 
on whether the corresponding completed trace is “normal” 

or “deviant” with respect to the input labeling function fc. 

 
2.3.4 Supervised learning 

Each cluster is used as training set of a supervised learning 
technique (e.g., decision tree learning, random forest) to 
generate a classifier that allows for discriminating between 
deviant and normal behaviors. For example, given two 

clusters c1 and c2, for each of them a classifier is built. 

 
2.3.5 Predictive monitoring 

At runtime, the set of classifiers generated during the pre- 
processing phase is used to make predictions about how 
the behavior of a current running trace will develop in the 
future. At any point in time, the current prefix of the running 
trace is classified as part of one of the clusters identified dur- 
ing the pre-processing phase. This is done by considering 
the cluster containing the prefix with the minimum distance 
from the current prefix. Based on the selected cluster (and, 
therefore, based on the control flow characteristics of the 
current prefix) the corresponding classifier is selected. This 
classifier is queried using the payload of the last event of 

the current prefix (exploiting the data perspective of the 
current prefix). For example, given a partial execution trace 

tp : M, A, C, D and the predicate “the patient will recover 
eventually”, we first identify the cluster to which the partial 
trace belongs, e.g., c1, and then the classifier associated to 
the cluster (e.g., the decision tree in Fig. 3) is exploited in 
order to predict whether the predicate will be verified or 
not. 

 
3 EVALUATION 

We implemented the proposed PM Framework as a so-called 
“Operational Support (OS) provider” on top of the ProM 
framework.3 In this  way,  the  framework  can  be  used  in 
a “streaming” mode, meaning that it can take as input a 
stream of events coming from an external system. Specifi- 
cally, the PM Framework uses the Weka implementation of 
the clustering and classification algorithms. Using such an 
implementation, we conducted an evaluation of different 
configurations of the proposed framework on a real-life 
dataset as reported below. 

 
3.1 Dataset 

We conducted experiments using the BPI challenge 2011 
[6] event log. This log records the execution of a cancer 
treatment process in a Dutch academic hospital over a three- 

years period. The log contains 1, 143 traces and 150, 291 
events. Each trace in the log refers to the treatment of one 
patient. Each event represents an execution of one among 

623 activities. Each event contains a timestamp, an event 
type (i.e., an activity lifecycle state like start or complete), 
a case (i.e., patient) identifier, and a number of domain- 
specific attributes (e.g., Age, Diagnosis, and Treatment code). 
There are 15 domain-specific attributes in total. 

Since the goal of predictive monitoring is to classify a 
case as normal or deviant, we need to define a notion of 
deviance (i.e., a labeling function). We experimented with 4 
labeling functions corresponding to the following LTL rules: 

• ϕ1 = F(“tumor marker CA −  19.9”)  ∨  
F(“ca −  125 using meia”), 

• ϕ2   =  G(“CEA tumor marker  using  meia” 
F(“squamous cell carcinoma using eia”)), 

• ϕ3  = (  “histological examination biopsies nno”) 
U(“squamous cell carcinoma using eia”), and 

• ϕ4 = F(“histological examination −  big resectiep”). 

For a given LTL rule, if a case violates the LTL rule, it is 
labeled as deviant (herein called a “positive” case); other- 
wise it is labeled as normal (herein called a “negative” case). 
Each of these labeling functions captures a business rule. 
Specifically, ϕ1 assesses that either the diagnostic test for the 
tumor marker CA-19.9 or for the tumor marker ca-125 has 
to be performed. ϕ2 states that every time the diagnostic 
test for the CEA tumor marker is performed, then the eia 
test for the squamous cell cancer has also to be performed 
eventually. ϕ3 assesses that no histological examination can 
be performed until the eia test for the squamous cell cancer 
is performed and, finally, ϕ4  states that the resection for 
the histological examination has to be performed eventually. 

 
3. http://processmining.org 

http://processmining.org/
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The distribution of positive and negative cases in the event 
log is: 458 negative vs. 682 positive for ϕ1, 893 negative vs. 
247 positive for ϕ2, 259 negative vs. 881 positive for ϕ3, and 
319 negative vs. 821 positive for ϕ4. 

 
3.2 Experimental Settings 

The experimentation workflow is outlined in Fig. 5. First, 
we order the traces in the log based on the time at which the 
first event of each trace has occurred. Then, we split the log 
temporally into two parts: 80%-20%. We used the first part 
as training log, i.e., we used these traces as historical data 
to construct clusters and build the classification models for 
prediction. Then, we implemented a log replayer to simulate 
the execution of the remaining traces (the testing log) by 
pushing them as an event stream to the implementation 
of the PM Framework and making predictions for each case 
during this replay. 

The first step in the offline component of the framework 
is to extract a set of prefixes from the historical traces and to 
encode each prefix as a vector in order to calculate clusters 
of prefixes. For the experiments, we extracted all prefixes of 
historical traces starting from prefixes of length 1 and up to 

length 21 in steps of g, where g    3, 5, 10 . For example, 

for g = 5, we extracted all prefixes of lengths 1, 6, 11, 16, 
and 21 for each trace in the training set. 

The second step in the framework is to construct clusters 
of prefixes. For this, we used two popular clustering meth- 
ods, namely model-based clustering [7] and DBSCAN [8]. 
In model-based clustering, we need to calculate the center 
point and covariance matrix of clusters. These parameters 
can only be computed if we use an Euclidean distance. The 
string-edit distance – which is otherwise a natural distance 
in the context of traces – is not an Euclidean distance. Hence, 
we applied model-based clustering using the Euclidean 
distance over the frequency-encoded prefixes. On the other 
hand, in DBSCAN, we just need to calculate the distance 
between two points and this can be done using the edit 
distance. Accordingly, for DBSCAN, we used edit distance 
over sequence-encoded prefixes. 

For the model-based clustering method, it is necessary 
to set the number of clusters to be created (parameter k). 
Meanwhile, DBSCAN requires the minimum number of 
points in a cluster (parameter minPoints) and the min- 

imum radius of a cluster (parameter ϵ). For each of the 

three datasets of prefixes (g 3, 5, 10 ), we identified the 
optimal parameters for each of these clustering methods. In 
the case of model-based clustering, we applied model-based 

clustering with k = 15 to 35 clusters and chose the value of 

k that achieved the highest Bayesian Information Criteria 
(BIC). Meanwhile, the DBSCAN optimal parameters were 
estimated by using the sorted k-dist graph [8]. This led us to 

set minPoints = 4 and ϵ = 0.125. 
The third step in the framework is to build a classifier 

for each cluster of trace prefixes. Specifically, each cluster is 
used as training set of a supervised learning technique to 
generate a classifier that discriminates between deviant and 
normal cases. A range of classification algorithms has been 
proposed in the literature. In this paper, we use decision 
trees, which are known for the interpretability of the models 
they generate, and random forests, which apply similar 

 

 

Fig. 5: Experimentation workflow. 

 

principles as decision trees but are designed to maximize 
accuracy rather than interpretability. 

Combining the two clustering and the two classification 
techniques, we obtain the following four PM Framework 
instances: 

• mbased dt: model-based clustering and decision trees; 
• dbscan dt: DBSCAN clustering and decision trees; 
• mbased rf : model-based clustering and random forests; 
• dbscan   rf : DBSCAN clustering and random forests. 

We replayed each trace in the testing set and produced a 

prediction of the outcome of the case every 5 events (starting 
from the first event in each trace). Each prefix of each 
running trace is encoded in the same way as the historical 
traces and assigned to the closest cluster. In case of model- 
based clustering, the closest cluster is the one with the 
minimum Euclidean distance from the current prefix, while 
for DBSCAN the closest cluster is  the  cluster  containing 
the prefix with the minimum edit distance from the current 
prefix. We use the classifier associated to the closest cluster 
to predict the label for the current running case. To consider 
a prediction reliable, the corresponding class support and 
class probability need to be above a given minimum class 
support and minimum class probability threshold. In our 

experiments, the minimum class support is set to s = 6. 
The minimum class probability thresholds considered are 

prob 0.6, 0.7, 0.8, 0.9 . The trace in the testing set is 
replayed until either a satisfactory prediction is achieved or 
the end of the trace is reached. The latter situation is herein 
called a prediction failure. 

For the on-the-fly approach, the minimum class sup- 
port is also set to s = 6. The minimum class probability 

thresholds considered are prob 0.6, 0.7, 0.8, 0.9 . In this 
case, we extracted all prefixes of historical traces starting 
from prefixes of length 1 and up to length 21, one every 
g = 10 events. As for the PM Framework, also in this case, 
we replayed each trace in the testing set and produced a 
prediction every 5 events. 

 
3.3 Research Questions and Metrics 

The goal of the evaluation is focused on two aspects: the 
performance of the approach in terms of the quality of the 
results and the performance of the approach in terms of the 
time required to provide predictions. 

In particular, we are interested in answering the follow- 
ing two research questions: 
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RQ1 How effective is the PM Framework in providing accurate 
results as early as possible? 

RQ2 How efficient is the PM Framework in providing results? 

To answer RQ1, we evaluated the performance of the 

approach in terms of its prediction accuracy. However, as 
highlighted by Salfner et al. in related work in the field of 
failure prediction methods [9], using accuracy measures as 
sole indicators of the effectiveness of a prediction technique 
may be misleading. Accordingly, we also included metrics 
associated to the earliness of the prediction, to reflect the 
desire to make a prediction with sufficient confidence as 
early as possible. Furthermore, since the proposed method 
may sometimes fail to make a prediction at all for a given 
trace, we also measured the percentage of cases where a 
prediction is not made (failure-rate). Finally, to answer RQ2, 
we measured the computation time required to provide a 
prediction. Below, we discuss in more detail how each of 
these performance dimensions was measured. 

F1-score: This  measure  is  defined  with  respect  to 
a gold standard that indicates the correct labeling of each 
trace. In our experiments, we extracted  the  gold  stan- 
dard by evaluating the input predicate on each completed 
trace in the testing set. Given the gold  standard,  we 
classify predictions made at runtime into four categories: 
i) true-positive (TP : positive outcomes correctly predicted); 
ii) false-positive (FP : negative outcomes predicted as pos- 

itive); iii) true-negative (TN : negative outcomes correctly 

predicted); iv) false-negative (FN : positive outcomes pre- 
dicted as negative). F1-score, which intuitively represents 
the proportion of correctly classified positive results with 
respect to all the possible cases, is defined as: 

  2TP  

be made right away from the first event in a trace – except 
in the very unlikely case where the classifier gives a class 
probability of exactly 0.5 to each class. With a slightly higher 
threshold (e.g., 0.6), a prediction is very likely to be made 
at some point in each trace, and hence the failure-rate is 
very low. This latter setting is suitable if the user considers 
that “no prediction” (i.e., failure) is equivalent to a “wrong 
prediction”. 

Computation time: We estimate three different types 
of computation times required for providing a prediction: 

• init time: the time required for pre-processing, i.e., for 
clustering and supervised learning; 

• processing time: the total time required for processing the 
entire testing set; 

• average prediction time: the average time required to the 
predictor for returning an answer at each evaluation 
point. 

3.4 Results 

Fig. 6 reports F1-score, failure-rate and earliness obtained 
by applying the baseline on-the-fly approach for each of 
the four investigated predicates (ϕ1 ϕ4) with different 
minimum class probability thresholds. By looking at the 
plots, the four metrics seem not to be particularly affected 
by the differences in terms of minimum class probability 
thresholds. Overall, for the four predicates, the F1-score 
seems to depend on the formula under analysis, ranging 

between a minimum value of 0.47 for ϕ1 to a maximum of 

0.93 for for ϕ4. The failure-rate is generally high, varying 
from a value of 0.36 for ϕ3 up to 0.6 for ϕ1. The earliness 
for ϕ1 is slightly lower than for the other predicates. 

Fig. 7 plots, for each of the four predicates, F1-score, 
F1-score = 

2TP + FP + FN 
(1) failure-rate and earliness obtained by instantiating the PM 

Framework with the model-based clustering and with the 
Earliness:  As already mentioned, during the replay 

of each trace in the testing log, we give a prediction every 

5 events (starting from the first event in the trace). While 
replaying a trace, we consider a prediction reliable and we 
stop the replay when the corresponding class probability 
is above the given minimum class probability threshold. For 
this reason, the earliness is directly dependent on the chosen 
class probability threshold. The lower the class probability 
threshold is, the earlier a prediction is given. The earliness 
of the prediction is defined as 1 minus the ratio between 
the index indicating the position of the last evaluation point 
(the one corresponding to the reliable prediction) and the 
size of the trace under examination. Earliness is a crucial 
measure since, during the execution of a business process, 
the stakeholders must be provided with predictions as soon 
as possible to apply possible reparative actions in case there 
is high probability of deviance in the future. 

Failure-rate: Sometimes it happens that, when replay- 
ing a trace of the testing set, the end of the trace is reached 
and no prediction has been made with a sufficiently high 
class probability. In this case, the answer of the predictor is 
“maybe” to indicate that it was not possible to provide a 
reliable prediction. The percentage of traces in the log that 
lead to a failure in the prediction is called failure-rate. Like 
earliness, also the failure-rate is directly dependent on the 
chosen minimum class probability threshold. If we set the 
class probability threshold to 0.5, a prediction would always 

decision tree classification (mbased dt) for different min- 
imum class probability thresholds and prefix gaps. The 
plots show that mbased dt reaches a peak of F1-score of 
0.92 for ϕ1 with a threshold for minimum class probability 
(prob = 0.8). A high failure-rate influences the F1-score 
since, in its computation, we can rely on a lower number 
of predictions. On the other hand, a high earliness can also 
negatively affect the F1-score. Indeed, a too high earliness 
results into very little information carried by the running 
trace in terms of control flow. Focusing only on the results 
with a reasonably low failure-rate (e.g., with failure-rate 

lower than 0.25) and an earliness not excessively high (e.g., 

lower than 0.9), mbased dt still guarantees to find, for each 
predicate, a parameter configuration resulting in a good F1- 

score. The F1-score values range, indeed, between 0.58 and 
0.92 for the four predicates. 

In general, by opportunely selecting the minimum class 
probability threshold, it is possible to meet different needs 
and preferences. For example, for mbased dt, it seems that 

prob = 0.9 ensures good values of F1-score, whereas for 
the other class probability thresholds, often the predictions 
are given too early, thus resulting in a poor F1-score. This 
is especially true for ϕ2, the only predicate among the ones 
under examination for which the number of deviant cases is 
much lower than the number of normal cases. 

Fig. 8 shows the same type of plots of Fig. 7 obtained by 
instantiating the PM Framework with DBSCAN clustering 
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Fig. 6: On-the-fly predictive monitoring - F1-score, failure-rate and earliness. 
 
 

Fig. 7: Model-based clustering and decision tree classification (mbased dt) - F1-score, failure-rate and earliness. 

 
and with the decision tree classification (dbscan dt). In this 
case, the earliness is always very high and this leads to low 
values for F1-score for the two predicates with a low number 
of deviant cases, i.e., for ϕ1   and especially for ϕ2. For 

class probability thresholds 0.8 and 0.9, the F1-score reaches 

values higher than 0.9 for three of the four predicates under 

examination (ϕ1, ϕ3, and ϕ4), whereas for ϕ2  it is not able 
to perform better than 0.5. 

Fig. 9 shows the values of F1-score, failure-rate and 
earliness for the model-based clustering and the random 
forest classification (mbased rf ). For prob = 0.9, the F1- 

score reaches values higher than 0.8 for three of the four 
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Fig. 8: DBSCAN clustering and decision tree classification (dbscan dt) - F1-score, failure-rate and earliness. 
 
 

Fig. 9: Model-based clustering and random forest classification (mbased rf ) - F1-score, failure-rate and earliness. 

 
predicates under examination (ϕ1, ϕ3, and ϕ4), whereas for 
ϕ2  is equal to 0 for all the prefix gaps. By looking at the 
only results with failure-rate lower than 0.25 and earliness 
lower than 0.9, the F1-score values for all predicates lie in 
the range 0.42-0.86. 

Fig. 10 reports the values of the three metrics for the last 

instance of the PM Framework, i.e., the one using DBSCAN 
clustering and random forest classification (dbscan rf ). We 
note that, also in this case, like in dbscan dt, the earliness 
is extremely high (for all the considered configurations it is 

always higher than 0.95). This leads to low values for F1- 
score for the two predicates with a low number of deviant 
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Fig. 10: DBSCAN clustering and random forest classification (dbscan rf ) - F1-score, failure-rate and earliness. 
 
 

instance 
avg 

on-the-fly 
avg 

fmwk 
p-value | Cohen-d | 

avg 
on-the-fly 

avg 
fmwk 

p-value | Cohen-d | 
avg 

on-the-fly 
avg 

fmwk 
p-value | Cohen-d | 

avg 
on-the-fly 

avg 
fmwk 

p-value | Cohen-d | 

mbased dt 0.809 0.672 0.187 0.523 0.449 0.078 <0.001 3.1 0.824 0.889 0.024 0.595 0.382 0.516 0.187 0.58 
dbscan dt 0.809 0.702 0.044 0.604 0.449 0.251 <0.001 1.518 0.824 0.839 <0.001 2.383 0.382 0.505 0.018 0.766 

mbased rf 0.809 0.645 0.004 0.924 0.449 0.017 <0.001 3.115 0.824 0.839 0.562 0.149 0.382 0.504 0.034 0.676 
dbscan rf 0.809 0.641 0.052 0.699 0.449 0.343 0.083 0.631 0.824 0.977 <0.001 3.125 0.382 0.429 0.495 0.24 

TABLE 1: Statistical comparison between each PM Framework instance and the on-the-fly approach 

 
cases, i.e., ϕ1 and ϕ2. For prob = 0.9, the F1-score reaches 

values higher than 0.7 for three of the four predicates under 
examination (ϕ1, ϕ3, and ϕ4), whereas for ϕ2 is equal to 0 
for all the prefix gaps. 

To quantify the difference in terms of the various evalu- 
ation metrics of the PM Framework with respect to the on- 
the-fly approach, we (i) evaluated whether a statistically 
significant difference exists between each of the four PM 

Framework instances (with prefix gap 10) and the on-the- 
fly approach; and (ii) measured the strength of the dif- 
ference. Specifically, we applied a two-tailed paired sta- 
tistical test - the non-parametric Wilcoxon test [10] - on 
each of the evaluation metrics and on a global measure 
g obtained by combining the three metrics based on the 

formula g   = F 1 score    (1     failure rate)    earliness. 

The idea is that the higher the value of g is, the better the 
technique overall performs. Then, we also computed the 
Cohen     d effect-size [11] to identify whether the magnitude 

of the difference is small (   0.2), medium (    0.5), or large 

(> 0.8). Table 1 reports, for each PM Framework instance, the 
corresponding p-value and effect-size. The p-values related 
to the statistically significant4 differences are reported in 
bold in Table 1. The table shows that there is no statistically 

 
4. The analysis is performed with a level of confidence of 95% (p- 

value < 0.05), i.e., there is only 5% probability that the results are 
obtained by chance. 

significant difference between the on-the-fly approach and 
the PM Framework instances mbased dt and dbscan rf in 
terms of F1-score. Conversely, the PM Framework instances 
mbased rf and dbscan dt perform statistically significantly 
worse in terms of F1-score than the on-the-fly approach. On 
the other hand, by looking at the failure-rate, we can observe 
that a statistically significant difference exists for three of 
the four PM Framework instances under examination with 
respect to the on-the-fly approach. In particular, the failure- 
rate is lower for the PM Framework instances. Similarly, 
we found that in two of the four PM Framework instances 
under examination, we have a statistical difference in terms 
of earliness with respect to the on-the-fly approach; the 
earliness is higher for the PM Framework instances, which, in 
those case, perform better than the on-the-fly approach. By 

looking at the global measure g, we find that on average 

the PM Framework instances perform overall better than 
the on-the-fly approach. While for mbased dt and dbscan rf 
there is no statistically significant difference between the 
two approaches, in the case of dbscan dt and mbased rf the 
PM Framework instances outperform the on-the-fly approach 
with a statistically significant difference. 

 
In Fig. 11, we show the results obtained with DBSCAN 

clustering and decision tree classification for different pro- 
portions of training and testing data, i.e., choosing as train- 
ing logs 60%, 70%, and 80% of the traces of the original 

Fmwk F1-score failure-rate earliness g 
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Fig. 11: DBSCAN clustering and decision tree classification - F1-score, failure-rate and earliness- for different proportions 
of training and testing data. 

 
 

 

Fig. 12: Model-based clustering and decision tree classification - F1-score, failure-rate and earliness- for different numbers 
of clusters. 

 

log, and as testing logs, 40%, 30% and 20% of the traces, 
respectively. The results show that, as expected, F1-score 
slightly improves with more training data. However, the 
effectiveness of the approach is not significantly affected in 

case of little training data available. 

In Fig. 12, we show the results obtained with model- 
based clustering and decision tree classification for different 
numbers of clusters. It is relevant to highlight that, without 
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Formula F1-score failure-rate earliness 
ϕ1 0.046 0.018 0.989 
ϕ2 0.481 0.004 0.98 
ϕ3 0 0 1 
ϕ4 0.107 0.013 0.971 

TABLE 2: Only-control-flow baseline results 

 
 

clustering (number of clusters equal to 1), the failure-rate 
is higher than in the other cases. This is probably due to 
the fact that the heterogeneity of the traces considered all 
together in only one cluster does not allow us to obtain 
predictions with a class probability sufficiently high. More- 
over, by choosing the optimal number of clusters among 
those greater than or equal to 15, we obtain slightly better 
performances in terms of F1-score than for smaller numbers 
of clusters. 

Furthermore, in order to provide a hint of the benefits of 
using an approach that exploits both control flow and data 
flow, we also compared the PM Framework instances against 
an only-control-flow baseline. Such a baseline was obtained 
by applying frequency-based encoding to individual activi- 
ties and discriminative patterns computed according to the 
approach described in [12]. In Table 2, we show the results 
obtained with minimum class probability threshold equal to 
0.7 and prefix gap equal to 5. In addition, we use random 
forest as classifier to get the predictions. We obtained similar 
results for the other configurations. The results show that 
the only-control-flow baseline is slightly more accurate than 

mbased rf for ϕ2 and has a comparable F1-score with respect 
to dbscan rf . The F1-score is significantly lower in all the 
other cases. The baseline performs extremely well in terms 
of failure-rate and earliness. The considerations and the 
plots discussed provide an answer to RQ1. 

To answer RQ2, we focus on two of the four PM Frame- 
work instances, the ones based on decision tree classification, 
since the computational time required by the corresponding 
random forest ones, do not present significant differences. 
Table 3 reports the init time (which is null for the on-the- 
fly approach), the processing time and the average prediction 
time obtained by applying the on-the-fly approach for each 
of the four investigated predicates with different minimum 
class probability thresholds. The results in the table show 
that processing a trace with such an approach is very expen- 
sive in terms of time required (the processing time ranges 
between 100 to 130 hours), which makes the approach 
difficult to be used in runtime scenarios. The average predic- 
tion time, i.e., the time required at each evaluation point to 
provide a prediction, strongly depends on the investigated 
predicate, and ranges from about 25 seconds for ϕ2 to about 
3 minutes for ϕ1. 

Table 4 reports the computational time, and specifically 
the init time, processing time and average prediction time, 
required for providing a prediction for each of the four 
predicates with different minimum class probability thresh- 
olds and considering different prefix gaps for mbased dt. By 
observing the table, it seems that no significant differences 
exist in terms of pre-processing time (init-time) for different 
predicates and minimum class probability thresholds. On 
the other hand, the pre-processing time depends on the 
considered trace prefix gap: the higher the prefix gap is, 
the less prefix traces are in the training set, and the less 

time is required to process them. In general, very small 
differences can be observed in terms of average prediction 

time (always 10 milliseconds), while more significant dif- 
ferences occur in terms of the time required for processing 

the entire testing set, ranging from a minimum value of 1 

second to a maximum value of about 67 seconds. These 
values are, however, still reasonable to be considered for 
providing predictions at runtime. The differences in terms of 
processing time depend on the predicate, on the prefix gap 
as well as on the minimum class probability threshold. More 
in general, the processing time is related to the failure-rate 
and the earliness: a higher failure-rate (and low earliness) 
for a specific settings leads to a higher number of evaluation 
points that have to be processed (so that the processing time 
increases). 

Finally, Table 5 reports the init time, the processing time 
and the average prediction time required to the PM Framework 
instance obtained combining the DBSCAN clustering and 
the decision tree classification techniques (dbscan dt) for 
providing predictions. Also in this case, the initialization is 
constant for different minimum class probability thresholds 
and predicates, while it depends on the prefix gap (ranging 

from about 1.25 minutes to about 5 minutes). Small differ- 
ences exist in terms of average prediction times (ranging 

from 8 to 31 milliseconds), while more significant ones hold 
in terms of processing time. The processing time, indeed, 

ranges from 1 to 30 minutes when the failure-rate is very 

high (ϕ3, prob = 0.9, gap = 3). 

By comparing the performance of the proposed PM 
Framework instances with the on-the-fly approach, it clearly 
comes out that, with comparable results in terms of F1- 
score, failure-rate and earliness, the time required for pro- 
cessing a trace and providing a prediction is much lower 
with the clustering-based approach. The processing time 

is indeed about 300 times lower for dbscan dt and 16, 000 
times lower for mbased dt. Even taking into account the init 
time required by the clustering-based predictive monitoring 
approaches, which is computed once per all traces, such a 
time is anyway lower than the processing time of the on- 
the-fly approach. Similarly, the average prediction time for 

the clustering-based approaches is even 5, 000 times smaller 
than the average prediction time of the on-the-fly approach: 
the average prediction time for dbscan dt and mbased dt is 
of the order of few milliseconds, while for the on-the-fly 
approach it can also reach two minutes. Compared to the 
baseline the PM Framework is considerably more efficient 
and can be used for runtime prediction under high through- 
put (RQ2). 

 
3.5 Discussion 

The observations and the analysis performed so far allow 
us to draw some conclusions and guidelines. The solutions 
provided by the different instances of the PM Framework 
offer the possibility to meet different types of needs, by 
opportunely setting the available configuration parameters. 

For instance, in settings in which users are more inter- 
ested in getting predictions at an early stage of a trace ex- 
ecution, low minimum class probability thresholds should 
be preferred. The same type of thresholds should also be 
preferred to have a prediction even if not always correct 
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TABLE 3: On-the-fly predictive monitoring - Processing and average prediction time (in seconds) 
 

 prob=0.6 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 2844.829 2.54 0.007 1660.859 5.824 0.01 713.558 3.429 0.009 
ϕ2 2844.444 1.366 0.006 1662.347 7.536 0.01 714.918 5.615 0.009 
ϕ3 2843.995 1.378 0.006 1661.454 11.959 0.01 713.166 2.697 0.008 
ϕ4 2844.803 10.95 0.006 1661.599 18.301 0.01 713.522 4.644 0.009 

 prob=0.7 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 2842.966 8.138 0.007 1661.364 34.657 0.01 714.605 15.411 0.009 
ϕ2 2843.775 1.344 0.006 1660.577 9.807 0.011 713.023 7.059 0.009 
ϕ3 2843.078 4.861 0.007 1661.214 20.782 0.011 713.106 47.958 0.009 
ϕ4 2845.012 10.938 0.007 1661.828 39.13 0.01 713.915 13.48 0.009 

 prob=0.8 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 2843.349 22.655 0.007 1662.209 15.328 0.01 714.142 10.584 0.009 
ϕ2 2843.716 16.625 0.006 1661.085 26.023 0.011 713.067 12.912 0.009 
ϕ3 2845.504 6.267 0.007 1660.463 8.854 0.011 713.077 4.618 0.009 
ϕ4 2844.309 13.942 0.007 1661.118 44.609 0.01 713.349 16.78 0.01 

 prob=0.9 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 2844.202 25.645 0.007 1660.841 67.494 0.01 713.522 17.333 0.009 
ϕ2 2844.342 37.222 0.006 1661.668 15.94 0.011 714.25 6.388 0.009 
ϕ3 2844.619 17.646 0.007 1661.371 4.877 0.01 714.319 3.412 0.009 
ϕ4 2846.026 29.548 0.007 1660.566 9.377 0.01 713.438 7.065 0.009 

TABLE 4: Model-based clustering and decision tree classification (mbased dt)- Init, processing and average prediction time 
(in seconds) 

 

rather than a non-prediction. Indeed, low minimum class 
probability thresholds would allow users to get an almost 
null failure-rate with an acceptable F1-score in many cases. 

For the choice  of  the  clustering  and  the  classifica- 
tion technique to use for instantiating the PM Framework, 
mbased rf presents an average F1-score lower than the other 
instances. In general, the instances based on random forests 
seem to perform slightly worse than the ones based on de- 
cision trees. Furthermore, mbased dt outperforms dbscan dt. 
The instances based on DBSCAN present a very high ear- 
liness. In all the cases, the failure-rate increases with the 
minimum class probability threshold. 

The choice of the configuration values also depends on 
the predicate under consideration. Predicates with a lower 
number of positive cases in the historical dataset lead to a 
lower F1-score. For instance, in the investigated settings, the 
F1-scores derived for ϕ1 and ϕ2 are generally worse than 

the ones derived for ϕ3 and ϕ4. 

 
3.6 Threats to Validity 

One of the main threats to the external validity of the 
evaluation is the application of the PM Framework to a single 
event log. The use of more logs would clearly allow for 
more general results. However, such a threat is mitigated 
by the fact that the considered log is a real-life log with 
real data chronologically ordered so as to simulate a realistic 
scenario. A second threat is the choice of the predicates used 
for the evaluation. Also in this case, we limited ourselves 
to 4 predicates. However, they are realistic business rules 
covering all the LTL constructs. 

4 RELATED WORK 

The problem of predictive process monitoring has been 
addressed in several previous studies. For example, an 
approach for prediction of abnormal termination of busi- 
ness processes is presented in [13]. Here, a fault detec- 
tion algorithm (local outlier factor) is used to estimate the 
probability of a fault occurring. Alarms are provided for 
early notification of probable abnormal terminations. In [14], 
[15], a technique is presented to predict “late show” events 
in transportation processes by applying standard statistical 
techniques to find correlations between “late show” events 
and external variables related to weather conditions or road 
traffic. In [16], the authors evaluate three types of predictive 
monitoring techniques and combinations of them on an 
industrial case study in the area of transport and logistics. 

A key difference between the above predictive monitor- 
ing techniques and our technique is that they rely either 
on the control-flow or on the data perspective, whereas 
we take both perspectives into consideration. In addition, 
we provide a general framework for predictive process 
monitoring, which is flexible and can be instantiated with 
specific clustering and classification techniques to fit differ- 
ent scenarios. 

Kang et al. [17] propose another predictive process mon- 
itoring technique, which starts by constructing a transition 
system from the event log. A state in this transition system 
represents the set of events that have occurred in the prefix 
of a case. Transitions are annotated with probabilities. The 
resulting transition system is used at runtime to predict Key 
Performance Indicators (KPIs) of a running  case. Unlike 

  prob=0.7 prob=0.8 prob=0.9 
 init processing avg. pred. init processing avg. pred. init processing avg. pred. init processing avg. pred. 
ϕ1  453946.354 165.84  456517.477 164.116  466850.858 171.528  474879.207 177.843 
ϕ2  368796.069 25.532  366606.233 25.36  368895.547 26.622  371021.759 27.94 
ϕ3  395761.404 45.773  396113.806 45.835  395810.652 45.797  384078.402 40.978 
ϕ4  234582.674 38.239  238284.95 40.224  247649.381 46.305  290813.698 25.854 
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 prob=0.6 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 296.707 77.535 0.03 174.26 43.927 0.023 94.956 30.457 0.01 
ϕ2 296.474 470.605 0.024 174.093 65.692 0.018 76.567 83.382 0.01 
ϕ3 299.63 61.476 0.02 172.858 32.376 0.019 82.567 20.599 0.011 
ϕ4 301.507 349.717 0.025 172.904 260.02 0.02 76.932 103.178 0.011 

 prob=0.7 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 297.478 720.306 0.026 172.587 816.293 0.025 78.03 61.288 0.013 
ϕ2 299.725 473.14 0.024 173.853 66.565 0.0187 75.541 149.526 0.011 
ϕ3 298.888 74.922 0.021 173.233 479.454 0.018 76.189 107.485 0.012 
ϕ4 297.841 350.111 0.027 174.746 603.756 0.019 78.221 102.639 0.012 

 prob=0.8 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 296.225 1313.315 0.031 175.039 937.048 0.025 75.784 308.192 0.015 
ϕ2 298.736 1567.935 0.026 173.587 70.065 0.019 79.096 591.503 0.014 
ϕ3 294.316 1110.0883 0.027 174.532 545.689 0.022 77.114 176.959 0.015 
ϕ4 301.411 784.481 0.028 175.386 642.789 0.019 75.418 128.4 0.011 

 prob=0.9 
ϕ gap=3 gap=5 gap=10 

init processing avg. prediction init processing avg. prediction init processing avg. prediction 
ϕ1 296.36 1395.725 0.029 174.147 1047.62 0.025 75.997 355.925 0.015 
ϕ2 299.012 1577.679 0.028 173.56 1294.726 0.023 78.354 619.202 0.012 
ϕ3 297.687 2057.379 0.027 173.599 1018.924 0.019 76.989 420.525 0.008 
ϕ4 294.808 1300.652 0.027 176.473 1041.599 0.018 78.387 213.356 0.013 

TABLE 5: DBSCAN clustering and decision tree (dbscan dt) - Init, processing and average prediction time (in seconds) 

 
our proposal, this approach does not take into account 
event payloads. Also, the prediction target is different. Our 
framework predicts binary outcomes (compliant vs. non- 
compliant) whereas in [17], the goal is to predict KPIs. Other 
proposals for predicting numerical KPIs of ongoing cases 
include [18], [19] and [20], while [21] and [22] deal with the 
problem of predicting the remaining time of a case. 

Another body of related work focuses on estimating 
risks during the execution of a business process. In [23], 
the authors present a technique to support process par- 
ticipants in making risk-informed decisions, with the aim 
of reducing the materialization of certain predefined risks. 
Their technique constructs a decision tree for every decision 
point in the process, and uses this model to determine the 
probability that a given risk materializes for each branch 
of the decision point. The framework uses both control-flow 
features and event payloads. Specifically, each activity in the 
process is treated as a boolean feature in order to construct 
the decision tree: the feature corresponding to activity X is 
true iff activity X has occurred in the prefix of the ongoing 
case. The PM Framework differs from this proposal in that 
it applies clustering prior to constructing the classifier – in 
this way each classifier is only constructed for groups of 
similar traces. Also, the classifier is constructed using only 
data attributes, as the control-flow information is already 
taken into account during the clustering step. 

The idea of clustering traces prior to building models 
from them has been considered in the field of specification 
mining in [24]. In this latter work, sets of traces produced 
by program executions are first clustered. For each cluster, a 
specification (specifically a probabilistic finite state machine) 
is constructed. Finally, the finite state machines produced for 
each cluster are merged together into a single specification. 

 
5 CONCLUSION 

We presented a framework for predictive monitoring of 
business processes that exploits data from past execution 

traces (both control flow and data attributes associated to 
events) to estimate the probability that a given predicate 
will be fulfilled upon completion of a running case. The 
framework achieves relatively low runtime overhead by 
constructing classification models offline – one per cluster 
of prefixes of historical traces. At runtime the prediction 
is made by matching the running case to a cluster, and 
applying the corresponding classification model to extract a 
prediction. Compared to a previous method that computes 
classification models at runtime [1], this leads to comparable 
results in terms of accuracy (measured by F1-score) and 
to a significant improvement in terms of response times. 
Experimental results show that the framework can achieve 
high levels of earliness (i.e., predictions are made early 
during the running case) and low failure-rates (i.e., low 
number of cases where predictions cannot be made with 
sufficiently high class probability). 

In separate work, we have investigated the use of al- 
ternative early sequence classification techniques for pre- 
dictive process monitoring, such as Hidden Markov Models 
(HMMs) [25]. We are also investigating the idea of assigning 
the uncompleted trace of a running case to multiple clusters 
(and thus using multiple classifiers) for making predictions 
instead of assigning each uncompleted trace to one single 
cluster [26]. These and similar ideas can help to derive new 
variants of the proposed PM Framework. 

As future work, we plan to investigate the application 
of techniques for extracting sequence patterns to achieve 
further accuracy and earliness improvements. Several types 
of sequence pattern extraction techniques have been devel- 
oped in related fields, which might be applicable for pre- 
dictive process monitoring, including predictive sequence 
patterns [12] (which emphasize earliness), discriminative 
(dyadic) patterns [27], [28] (which emphasize discriminative 
power) and iterative patterns [29] (which have been success- 
fully applied to anomaly monitoring). 

As the experiments presented in this paper are based on 
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a single log, the results have low generalizability. Therefore, 
another avenue for future work is to conduct further ex- 
periments with logs with different characteristics and from 
different application domains. 
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[10] C.  Wohlin,  P.  Runeson,  M.  Hö st,  M.  C.  Ohlsson,  B.  Regnell,  and 
A. Wesslén, Experimentation in software engineering: an introduction. 
Norwell, MA, USA: Kluwer Academic Publishers, 2000. 

[11] Statistical Power Analysis for the Behavioral Sciences (2nd Edition), 
2nd ed. Routledge, Jul. 1988. 

[12] Z. Xing, J. Pei, G. Dong, and P. S. Yu, “Mining sequence classifiers 
for early prediction,” in Proc. of the SIAM International Conference 
on Data Mining (SDM). SIAM, 2008, pp. 644–655. 

[13] B. Kang, D. Kim, and S.-H. Kang, “Real-time business process 
monitoring method for prediction of abnormal termination using 
KNNI-based LOF prediction,” Expert Syst. Appl., vol. 39, no. 5, pp. 
6061–6068, 2012. 

[14] A. Metzger, R. Franklin, and Y. Engel, “Predictive monitoring of 
heterogeneous service-oriented business networks: The transport 
and logistics case,” in Proc. of SRII, 2012. 

[15] Z. Feldman, F. Fournier, R. Franklin, and A. Metzger, “Proactive 
event processing in action: a case study on the proactive manage- 
ment of transport processes,” in Proc. of DEBS, 2013. 

[16] A. Metzger, P. Leitner, D. Ivanovic, E. Schmieders, R. Franklin, 
M. Carro, S. Dustdar, and K. Pohl, “Comparing and combining 
predictive business process monitoring techniques.” IEEE T. Sys- 
tems, Man, and Cybernetics: Systems, vol. 45, no. 2, pp. 276–290, 
2015. 

[17] B. Kang, J. Jung, N. W. Cho, and S. Kang, “Real-time business 
process monitoring using formal concept analysis,” Industrial Man- 
agement and Data Systems, vol. 111, no. 5, pp. 652–674, 2011. 

[18] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar, and 
F. Leymann, “Monitoring and analyzing influential factors of 
business process performance,” in Proc. of EDOC. IEEE Computer 
Society, 2009, pp. 141–150. 

[19] M. Castellanos, N. Salazar, F. Casati, U. Dayal, and M.-C. Shan, 
“Predictive business operations management,” in Proc. of DNIS, 
2005, pp. 1–14. 

[20] F. Folino, M. Guarascio, and L. Pontieri, “Discovering context- 
aware models for predicting business process performances,” in 
Proc. of OTM, 2012, vol. 7565, pp. 287–304. 

[21] W. M. P. van der Aalst, M. H. Schonenberg, and M. Song, “Time 
prediction based on process mining,” Inf. Syst., vol. 36, no. 2, pp. 
450–475, 2011. 

[22] A. Rogge-Solti and M. Weske, “Prediction of remaining service 
execution time using stochastic petri nets with arbitrary firing 
delays,” in Proc. of ICSOC, 2013, pp. 389–403. 

[23] R. Conforti, M. de Leoni, M. La Rosa, and W. M. P. van der Aalst, 
“Supporting risk-informed decisions during business process exe- 
cution,” in Proc. of CAiSE, 2013, pp. 116–132. 

[24] D. Lo and S. Khoo, “Smartic: towards building an accurate, robust 
and scalable specification miner,” in Proceedings of ACM SIGSOFT 
FSE. ACM, 2006, pp. 265–275. 

[25] A. Leontjeva, R.  Conforti,  C.  Di  Francescomarino,  M.  Dumas, 
and F. M. Maggi, “Complex symbolic sequence encodings for 
predictive monitoring of business processes,” in Proc. of BPM. 
Springer, 2015, pp. 297–313. 

[26] I. Verenich, M. Dumas, M. La Rosa, F. M. Maggi, and C. Di 
Francescomarino, “Complex symbolic sequence clustering and 
multiple classifiers for predictive process monitoring,” in Business 
Process Management Workshops - BPM 2015, 2015, pp. 218–229. 

[27] D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun, “Classification of 
software behaviors for failure detection: a discriminative pattern 
mining approach,” in Proceedings of ACM SIGKDD.    ACM, 2009, 
pp. 557–566. 

[28] D. Lo, H. Cheng, and Lucia, “Mining closed discriminative dyadic 
sequential patterns,” in Proc. of EDBT. Springer, 2011, pp. 21–32. 

[29] N. A. Milea, S. Khoo, D. Lo, and C. Pop, “NORT: runtime anomaly- 
based monitoring of malicious behavior for windows,” in Prov. of 
Runtime Verification (RV). Springer, 2012, pp. 115–130. 

 
Chiara Di Francescomarino is researcher at 
Fondazione Bruno Kessler (FBK) in the Shape 
and Evolve Living Knowledge (SHELL) unit. 
She received her PhD in Information and Com- 
munication Technologies from the University of 
Trento, working on business process modeling 
and reverse engineering from execution logs. 
Her current research interests include business 
process modeling, collaborative modeling and 
evaluation of tools and techniques for its support, 
as well as business process monitoring. 

 
Marlon Dumas is Professor of Software Engi- 
neering at the University of Tartu, Estonia. Prior 
to this appointment he was faculty member at 
Queensland University of Technology and visit- 
ing researcher at SAP Research, Australia. His 
research interests span across the fields of soft- 
ware engineering, information systems and busi- 
ness process management. He is co-author of 
the textbook “Fundamentals of Business Pro- 
cess Management” (Springer, 2013). 

 

 
Fabrizio M. Maggi is a Senior Researcher at the 
University of Tartu, Estonia. He received his PhD 
in Computer Science in 2010 from the Univer- 
sity of Bari and has been working as postdoc- 
toral researcher at the Architecture of Informa- 
tion Systems (AIS) research group - Department 
of Mathematics and Computer Science - Eind- 
hoven University of Technology. His research 
interests span across the fields of business pro- 
cess management, data mining and service- 
oriented computing. 

 
Irene Teinemaa is a PhD student at the Uni- 
versity of Tartu working on predictive monitor- 
ing of business processes. Additionally, she is 
researcher at the Software Technology and Ap- 
plications Competence Center (STACC), where 
she works on various industrial data mining 
projects. She received her Master’s degree in 
Software Engineering in 2014. Her current re- 
search interests include data mining, machine 
learning, and process mining. 


