In this paper, we face the problem of designing accurate decision-making modules in measurement systems that need to be implemented on resource-constrained platforms. We propose a methodology based on multiobjective optimization and genetic algorithms (GAs) for the analysis of support vector machine (SVM) solutions in the classification error-complexity space. Specific criteria for the choice of optimal SVM classifiers and experimental results on both real and synthetic data will also be discussed.

Accurate and resource-aware classification based on measurement data

Caprile, Bruno Giovanni;
2008

Abstract

In this paper, we face the problem of designing accurate decision-making modules in measurement systems that need to be implemented on resource-constrained platforms. We propose a methodology based on multiobjective optimization and genetic algorithms (GAs) for the analysis of support vector machine (SVM) solutions in the classification error-complexity space. Specific criteria for the choice of optimal SVM classifiers and experimental results on both real and synthetic data will also be discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/60798
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact