In this paper, we face the problem of designing accurate decision-making modules in measurement systems that need to be implemented on resource-constrained platforms. We propose a methodology based on multiobjective optimization and genetic algorithms (GAs) for the analysis of support vector machine (SVM) solutions in the classification error-complexity space. Specific criteria for the choice of optimal SVM classifiers and experimental results on both real and synthetic data will also be discussed.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte di FBK.
Titolo: | Accurate and resource-aware classification based on measurement data |
Autori: | |
Data di pubblicazione: | 2008 |
Rivista: | |
Abstract: | In this paper, we face the problem of designing accurate decision-making modules in measurement systems that need to be implemented on resource-constrained platforms. We propose a methodology based on multiobjective optimization and genetic algorithms (GAs) for the analysis of support vector machine (SVM) solutions in the classification error-complexity space. Specific criteria for the choice of optimal SVM classifiers and experimental results on both real and synthetic data will also be discussed. |
Handle: | http://hdl.handle.net/11582/60798 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.