Indirect Time-of-Flight (I-TOF) cameras can be implemented in a number of ways, each with specific characteristics and performances. In this paper a comprehensive analysis of the implementation possibilities is developed in order to model the main performances with a high level of abstraction. After the extraction of the main characteristics for the high-level model, several figures of merit (FoM) are defined with the purpose of obtaining a common metric: noise equivalent distance, correlated and uncorrelated power responsivity, and background light rejection ratio. The obtained FoMs can be employed for the comparison of different implementations of range cameras based on the I-TOF method: specifically, they are applied for several different sensors developed by the authors in order to compare their performances.
Figures of Merit for Indirect Time-of-Flight 3D Cameras: Definition and Experimental Evaluation
Perenzoni, Matteo;Stoppa, David
2011-01-01
Abstract
Indirect Time-of-Flight (I-TOF) cameras can be implemented in a number of ways, each with specific characteristics and performances. In this paper a comprehensive analysis of the implementation possibilities is developed in order to model the main performances with a high level of abstraction. After the extraction of the main characteristics for the high-level model, several figures of merit (FoM) are defined with the purpose of obtaining a common metric: noise equivalent distance, correlated and uncorrelated power responsivity, and background light rejection ratio. The obtained FoMs can be employed for the comparison of different implementations of range cameras based on the I-TOF method: specifically, they are applied for several different sensors developed by the authors in order to compare their performances.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.