We propose a novel algorithm, Terminated Ramp-Support Vector Machines (TR-SVM), for classification and feature ranking purposes in the family of Support Vector Machines. The main improvement relies on the fact that the kernel is automatically determined by the training examples. It is built as a function of simple classifiers, generalized terminated ramp functions, obtained by separating oppositely labeled pairs of training points. The algorithm has a meaningful geometrical interpretation, and it is derived in the framework of Tikhonov regularization theory. Its unique free parameter is the regularization one, representing a trade-off between empirical error and solution complexity. Employing the equivalence between the proposed algorithm and two-layer networks, a theoretical bound on the generalization error is also derived, together with Vapnik-Chervonenkis dimension. Performances are tested on a number of synthetic and real data sets.

Terminated Ramp - Support Vector Machine: a nonparametric data dependent kernel

Merler, Stefano;Jurman, Giuseppe
2006-01-01

Abstract

We propose a novel algorithm, Terminated Ramp-Support Vector Machines (TR-SVM), for classification and feature ranking purposes in the family of Support Vector Machines. The main improvement relies on the fact that the kernel is automatically determined by the training examples. It is built as a function of simple classifiers, generalized terminated ramp functions, obtained by separating oppositely labeled pairs of training points. The algorithm has a meaningful geometrical interpretation, and it is derived in the framework of Tikhonov regularization theory. Its unique free parameter is the regularization one, representing a trade-off between empirical error and solution complexity. Employing the equivalence between the proposed algorithm and two-layer networks, a theoretical bound on the generalization error is also derived, together with Vapnik-Chervonenkis dimension. Performances are tested on a number of synthetic and real data sets.
File in questo prodotto:
File Dimensione Formato  
54005.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/54005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact