In this letter, a technique based on independent component analysis (ICA) and extended morphological attribute profiles (EAPs) is presented for the classification of hyperspectral images. The ICA maps the data into a subspace in which the components are as independent as possible. APs, which are extracted by using several attributes, are applied to each image associated with an extracted independent component, leading to a set of extended EAPs. Two approaches are presented for including the computed profiles in the analysis. The features extracted by the morphological processing are then classified with an SVM. The experiments carried out on two hyperspectral images proved the effectiveness of the proposed technique.

Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis

Dalla Mura, Mauro;
2011

Abstract

In this letter, a technique based on independent component analysis (ICA) and extended morphological attribute profiles (EAPs) is presented for the classification of hyperspectral images. The ICA maps the data into a subspace in which the components are as independent as possible. APs, which are extracted by using several attributes, are applied to each image associated with an extracted independent component, leading to a set of extended EAPs. Two approaches are presented for including the computed profiles in the analysis. The features extracted by the morphological processing are then classified with an SVM. The experiments carried out on two hyperspectral images proved the effectiveness of the proposed technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/51383
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact