Recently, the number of ontology matching techniques and systems has increased significantly. This makes the issue of their evaluation and comparison more severe. One of the challenges of the ontology matching evaluation is in building large scale evaluation datasets. In fact, the number of possible correspondences between two ontologies grows quadratically with respect to the numbers of entities in these ontologies. This often makes the manual construction of the evaluation datasets demanding to the point of being infeasible for large scale matching tasks. In this paper we present an ontology matching evaluation dataset composed of thousands of matching tasks, called TaxME2. It was built semi-automatically out of the Google, Yahoo and Looksmart web directories. We evaluated TaxME2 by exploiting the results of almost two dozen of state of the art ontology matching systems. The experiments indicate that the dataset possesses the desired key properties, namely it is error-free, incremental, discriminative, monotonic, and hard for the state of the art ontology matching systems.

Large Scale Dataset for the Evaluation of Ontology Matching Systems

Giunchiglia, Fausto;Avesani, Paolo;
2009-01-01

Abstract

Recently, the number of ontology matching techniques and systems has increased significantly. This makes the issue of their evaluation and comparison more severe. One of the challenges of the ontology matching evaluation is in building large scale evaluation datasets. In fact, the number of possible correspondences between two ontologies grows quadratically with respect to the numbers of entities in these ontologies. This often makes the manual construction of the evaluation datasets demanding to the point of being infeasible for large scale matching tasks. In this paper we present an ontology matching evaluation dataset composed of thousands of matching tasks, called TaxME2. It was built semi-automatically out of the Google, Yahoo and Looksmart web directories. We evaluated TaxME2 by exploiting the results of almost two dozen of state of the art ontology matching systems. The experiments indicate that the dataset possesses the desired key properties, namely it is error-free, incremental, discriminative, monotonic, and hard for the state of the art ontology matching systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/4567
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact