The optical spectra of some metals show pronounced resonance lines caused by collective excitations of conduction electrons. These excitations are known as particle plasmons, Mie plasmons, or surface plasmons. Their spectral properties have attracted a lot of interest, both for fundamental reasons and in a view of applications. Scope of the work is the growth of nanometric metal particles (Ni) and the study of its optical properties by spectroscopic ellipsometry. Ni particles are obtained by implanting SiO2 with pulsed laser ablation followed by heat treatment in inert atmosphere (N2). An analysis of the ellipsometric spectra for samples with different implantation times and energy is presented. Generally, the synthesis of such structures is performed using ion implantation techniques or chemical reaction methods, while here we propose pulsed laser ablation for the generation of these particles and annealing procedures for their activation. The experimental measurements were performed at IRST (Istituto per la Ricerca Scientifica e Tecnologica) of Fondazione Bruno Kessler in Trento and at the Physics Department of University of Messina.

Evidence of plasmon resonance of nickel particles deposited by pulsed laser ablation

Picciotto, Antonino;Pucker, Georg;Bellutti, Pierluigi;Bagolini, Alvise
2008

Abstract

The optical spectra of some metals show pronounced resonance lines caused by collective excitations of conduction electrons. These excitations are known as particle plasmons, Mie plasmons, or surface plasmons. Their spectral properties have attracted a lot of interest, both for fundamental reasons and in a view of applications. Scope of the work is the growth of nanometric metal particles (Ni) and the study of its optical properties by spectroscopic ellipsometry. Ni particles are obtained by implanting SiO2 with pulsed laser ablation followed by heat treatment in inert atmosphere (N2). An analysis of the ellipsometric spectra for samples with different implantation times and energy is presented. Generally, the synthesis of such structures is performed using ion implantation techniques or chemical reaction methods, while here we propose pulsed laser ablation for the generation of these particles and annealing procedures for their activation. The experimental measurements were performed at IRST (Istituto per la Ricerca Scientifica e Tecnologica) of Fondazione Bruno Kessler in Trento and at the Physics Department of University of Messina.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/4275
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact