Predicate abstraction is a powerful technique to reduce the state space of a program to a finite and affordable number of states. It produces a conservative over-approximation where concrete states are grouped together according to a given set of predicates. A precise abstraction contains the minimal set of transitions with regard to the predicates, but as a result is computationally expensive. Most model checkers therefore approximate the abstraction to alleviate the computation of the abstract system by trading off precision with cost. However, approximation results in a higher number of refinement iterations, since it can produce more false counterexamples than its precise counterpart. The refinement loop can become prohibitively expensive for large programs. This paper proposes a new approach that employs both precise (slow) and approximated (fast) abstraction techniques within one abstraction-refinement loop. It allows computing the abstraction quickly, but keeps it precise enough to avoid too many refinement iterations. We implemented the new algorithm in a state-of-the-art software model checker. Our tests with various real-life benchmarks show that the new approach almost systematically outperforms both precise and imprecise techniques.

An abstraction refinement approach combining precise and approximated techniques

Tonetta, Stefano;
2012-01-01

Abstract

Predicate abstraction is a powerful technique to reduce the state space of a program to a finite and affordable number of states. It produces a conservative over-approximation where concrete states are grouped together according to a given set of predicates. A precise abstraction contains the minimal set of transitions with regard to the predicates, but as a result is computationally expensive. Most model checkers therefore approximate the abstraction to alleviate the computation of the abstract system by trading off precision with cost. However, approximation results in a higher number of refinement iterations, since it can produce more false counterexamples than its precise counterpart. The refinement loop can become prohibitively expensive for large programs. This paper proposes a new approach that employs both precise (slow) and approximated (fast) abstraction techniques within one abstraction-refinement loop. It allows computing the abstraction quickly, but keeps it precise enough to avoid too many refinement iterations. We implemented the new algorithm in a state-of-the-art software model checker. Our tests with various real-life benchmarks show that the new approach almost systematically outperforms both precise and imprecise techniques.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/40209
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact