As LLM-based agents become increasingly autonomous and will more freely interact with each other, studying the interplay among them becomes crucial to anticipate emergent phenomena and potential risks. In this work, we provide an in-depth analysis of the interactions among agents within a simulated hierarchical social environment, drawing inspiration from the Stanford Prison Experiment. Leveraging 2,400 conversations across six LLMs (i.e., LLama3, Orca2, Command-r, Mixtral, Mistral2, and gpt4.1) and 240 experimental scenarios, we analyze persuasion and anti-social behavior between a guard and a prisoner agent with differing objectives. We first document model-specific conversational failures in this multi-agent power dynamic context, thereby narrowing our analytic sample to 1,600 conversations. Among models demonstrating successful interaction, we find that goal setting significantly influences persuasiveness but not anti-social behavior. Moreover, agent personas, especially the guard’s, substantially impact both successful persuasion by the prisoner and the manifestation of anti-social actions. Notably, we observe the emergence of anti-social conduct even in absence of explicit negative personality prompts. These results have important implications for the development of interactive LLM agents and the ongoing discussion of their societal impact.

I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy

Gian Maria Campedelli
;
Nicolò Penzo;Massimo Stefan;Marco Guerini;Bruno Lepri;Jacopo Staiano
2025-01-01

Abstract

As LLM-based agents become increasingly autonomous and will more freely interact with each other, studying the interplay among them becomes crucial to anticipate emergent phenomena and potential risks. In this work, we provide an in-depth analysis of the interactions among agents within a simulated hierarchical social environment, drawing inspiration from the Stanford Prison Experiment. Leveraging 2,400 conversations across six LLMs (i.e., LLama3, Orca2, Command-r, Mixtral, Mistral2, and gpt4.1) and 240 experimental scenarios, we analyze persuasion and anti-social behavior between a guard and a prisoner agent with differing objectives. We first document model-specific conversational failures in this multi-agent power dynamic context, thereby narrowing our analytic sample to 1,600 conversations. Among models demonstrating successful interaction, we find that goal setting significantly influences persuasiveness but not anti-social behavior. Moreover, agent personas, especially the guard’s, substantially impact both successful persuasion by the prisoner and the manifestation of anti-social actions. Notably, we observe the emergence of anti-social conduct even in absence of explicit negative personality prompts. These results have important implications for the development of interactive LLM agents and the ongoing discussion of their societal impact.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/365047
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact