In photocatalytic hydrogen evolution reactions, SiC catalyst was templated with biopolymers (cellulose, chitin, chitosan, sodium alginate) in a reaction medium containing eosin Y dye and triethanolamine. Biopolymers act as biotemplate and mediator, provide easy dispersion, hydrophilicity, morphological transformation and adhesion to semiconductor with the help of functional groups. The photo-deposition of MoSx and Pt in aqueous solution is performed on biopolymer-SiC nanocomposite to obtain biopolymer-SiC/MoSx and biopolymer-SiC/Pt by reducing (NH4)2MoS4 and H2PtCl6·6H2O, respectively. Sodium alginate-SiC/MoSx showed highest photocatalytic activity which is approximately 158-, 34- and 13 times higher than bare SiC, bare sodium alginate and sodium alginate-SiC catalyst, respectively. Moreover, the solar-to-hydrogen efficiencies are achieved about 19.83% under solar light irradiation for the sodium alginate-SiC/MoSx catalyst. In addition, photo-deposited MoSx and Pt on biopolymer-SiC nanocomposite resulted in enhanced photocatalytic activity and stability because of increased active sites and enhanced electron transfer ability due to the co-catalyst effect.

Biopolymer supported silicon carbide for enhanced photocatalytic hydrogen evolution reaction

Potrich, Cristina;
2025-01-01

Abstract

In photocatalytic hydrogen evolution reactions, SiC catalyst was templated with biopolymers (cellulose, chitin, chitosan, sodium alginate) in a reaction medium containing eosin Y dye and triethanolamine. Biopolymers act as biotemplate and mediator, provide easy dispersion, hydrophilicity, morphological transformation and adhesion to semiconductor with the help of functional groups. The photo-deposition of MoSx and Pt in aqueous solution is performed on biopolymer-SiC nanocomposite to obtain biopolymer-SiC/MoSx and biopolymer-SiC/Pt by reducing (NH4)2MoS4 and H2PtCl6·6H2O, respectively. Sodium alginate-SiC/MoSx showed highest photocatalytic activity which is approximately 158-, 34- and 13 times higher than bare SiC, bare sodium alginate and sodium alginate-SiC catalyst, respectively. Moreover, the solar-to-hydrogen efficiencies are achieved about 19.83% under solar light irradiation for the sodium alginate-SiC/MoSx catalyst. In addition, photo-deposited MoSx and Pt on biopolymer-SiC nanocomposite resulted in enhanced photocatalytic activity and stability because of increased active sites and enhanced electron transfer ability due to the co-catalyst effect.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/360807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact