The push towards miniaturized and low-power quantum sensors demands reliable and mass-manufacturable atomic reservoirs. In this paper, we report on the implementation of an automatic system to activate and characterize a wafer of microfabricated Rb cells. The setup is composed of a motorized translation system jointly with two optical sources, a high-power one used for activating Rb pills and the other for spectroscopy purposes. The spectroscopy signal is analyzed in real-time to check the release of Rb during activation. Alternatively, the signal recognition can be used in post-production for screening the entire wafer. In this sense, the presented automated setup represents an effective tool to characterize the cell production in terms of Rb content and signal contrast, making a step towards mass production of devices based on miniaturized alkali vapor cells.

Activation and characterization of Rb MEMS cells with an automatic system at wafer level

Cerrato, E.
;
Gionco, C.;Crivellari, M.;
2025-01-01

Abstract

The push towards miniaturized and low-power quantum sensors demands reliable and mass-manufacturable atomic reservoirs. In this paper, we report on the implementation of an automatic system to activate and characterize a wafer of microfabricated Rb cells. The setup is composed of a motorized translation system jointly with two optical sources, a high-power one used for activating Rb pills and the other for spectroscopy purposes. The spectroscopy signal is analyzed in real-time to check the release of Rb during activation. Alternatively, the signal recognition can be used in post-production for screening the entire wafer. In this sense, the presented automated setup represents an effective tool to characterize the cell production in terms of Rb content and signal contrast, making a step towards mass production of devices based on miniaturized alkali vapor cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/360128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact