Key assignment and key maintenance in encrypted networks of resource-limited devices may be a challenging task, due to the permanent need of replacing out-of-service devices with new ones and to the consequent need of updating the key information. Recently, Aragona et al. proposed a new cryptographic scheme, ECTAKS, which provides a solution to this design problem by means of a Diffie-Hellman-like key establishment protocol based on elliptic curves and on a prime field. Even if the authors proved some results related to the security of the scheme, the latter still lacks a formal security analysis. In this paper, we address this issue by providing a security proof for ECTAKS in the setting of computational security, assuming that no adversary can solve the underlying discrete logarithm problems with non-negligible success probability.
Formal security proof for a scheme on a topological network
Riccardo Longo
2023-01-01
Abstract
Key assignment and key maintenance in encrypted networks of resource-limited devices may be a challenging task, due to the permanent need of replacing out-of-service devices with new ones and to the consequent need of updating the key information. Recently, Aragona et al. proposed a new cryptographic scheme, ECTAKS, which provides a solution to this design problem by means of a Diffie-Hellman-like key establishment protocol based on elliptic curves and on a prime field. Even if the authors proved some results related to the security of the scheme, the latter still lacks a formal security analysis. In this paper, we address this issue by providing a security proof for ECTAKS in the setting of computational security, assuming that no adversary can solve the underlying discrete logarithm problems with non-negligible success probability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.