We prove that exactly 6 out of the 29 rational homology 3-spheres tessellated by four or less right-angled hyperbolic dodecahedra are L-spaces. The algorithm used is based on the L-space census provided by Dunfield in arXiv:1904.04628, and relies on a result by Rasmussen-Rasmussen arXiv:1508.05900. We use the existence of these manifolds together with a result of Martelli arXiv:1510.06325 to construct explicit examples of hyperbolic 4-manifolds containing separating L-spaces, and therefore having vanishing Seiberg-Witten invariants. This answers a question asked by Agol and Lin in arXiv:1812.06536.

Dodecahedral L-spaces and hyperbolic 4-manifolds

Battista, Ludovico;
2024-01-01

Abstract

We prove that exactly 6 out of the 29 rational homology 3-spheres tessellated by four or less right-angled hyperbolic dodecahedra are L-spaces. The algorithm used is based on the L-space census provided by Dunfield in arXiv:1904.04628, and relies on a result by Rasmussen-Rasmussen arXiv:1508.05900. We use the existence of these manifolds together with a result of Martelli arXiv:1510.06325 to construct explicit examples of hyperbolic 4-manifolds containing separating L-spaces, and therefore having vanishing Seiberg-Witten invariants. This answers a question asked by Agol and Lin in arXiv:1812.06536.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/353427
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact