The MIUR PRIN 4DInSiDe collaboration aims at developing the next generation of 4D (i.e., position and time) silicon detectors based on Low-Gain Avalanche Diodes (LGAD) that guarantee to operate efficiently in the future high-energy physics experiments. To this purpose, different areas of research have been identified, involving the development, design, fabrication and test of radiation-hard devices. This research has been enabled thanks to ad-hoc advanced TCAD modelling of LGAD devices, accounting for both technological issues as well as physical aspects, e.g. different avalanche generation models and combined surface and bulk radiation damage effects modelling. In this contribution, it is reviewed the progress and the relevant detector developments obtained during the research activities in the framework of the 4DInSiDe project.
Development and test of innovative Low-Gain Avalanche Diodes for particle tracking in 4 dimensions
O. A. Marti Villarreal;
2023-01-01
Abstract
The MIUR PRIN 4DInSiDe collaboration aims at developing the next generation of 4D (i.e., position and time) silicon detectors based on Low-Gain Avalanche Diodes (LGAD) that guarantee to operate efficiently in the future high-energy physics experiments. To this purpose, different areas of research have been identified, involving the development, design, fabrication and test of radiation-hard devices. This research has been enabled thanks to ad-hoc advanced TCAD modelling of LGAD devices, accounting for both technological issues as well as physical aspects, e.g. different avalanche generation models and combined surface and bulk radiation damage effects modelling. In this contribution, it is reviewed the progress and the relevant detector developments obtained during the research activities in the framework of the 4DInSiDe project.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.