Context: Engineering Ambient Assisted Living applications for the elderly is challenging due to the diversity and rapid changes of both end users' needs and technological environment equipment. Objective: Assistive applications can be provided as combinations of functionalities provided by IoT devices. With the pervasive availability of functionally equivalent IoT devices, they should be selected according to the specific deployment context in terms of user needs and conditions, device availability, and regulations when the operative context dynamic conditions can be set. Such selection is the objective of this work. Methods: We rely on a conceptual framework for self-adaptation as the enabler for a run-time decision-making process. It allows for representing relations among IoT devices, the functionalities they deliver, and the different modalities these functionalities are provided with in terms of goals, devices, and norms. The framework is based on three fundamental principles: (1) high-level abstractions separating the expected functionality, how it can be delivered, and who is responsible for its delivery; (2) AAL applications as the run-time composition of atomic functionalities; (3) centrality of the user in the system. Result: The Device-Goal-Norm framework is proposed to specify diagrams for different AAL applications, together with the semantics to transform these diagrams into run-time models. We also provide a running implementation of a run-time model based on the belief-desire-intention paradigm.

A model for automatic selection of IoT services in ambient assisted living for the elderly

Susi, Angelo
2023-01-01

Abstract

Context: Engineering Ambient Assisted Living applications for the elderly is challenging due to the diversity and rapid changes of both end users' needs and technological environment equipment. Objective: Assistive applications can be provided as combinations of functionalities provided by IoT devices. With the pervasive availability of functionally equivalent IoT devices, they should be selected according to the specific deployment context in terms of user needs and conditions, device availability, and regulations when the operative context dynamic conditions can be set. Such selection is the objective of this work. Methods: We rely on a conceptual framework for self-adaptation as the enabler for a run-time decision-making process. It allows for representing relations among IoT devices, the functionalities they deliver, and the different modalities these functionalities are provided with in terms of goals, devices, and norms. The framework is based on three fundamental principles: (1) high-level abstractions separating the expected functionality, how it can be delivered, and who is responsible for its delivery; (2) AAL applications as the run-time composition of atomic functionalities; (3) centrality of the user in the system. Result: The Device-Goal-Norm framework is proposed to specify diagrams for different AAL applications, together with the semantics to transform these diagrams into run-time models. We also provide a running implementation of a run-time model based on the belief-desire-intention paradigm.
File in questo prodotto:
File Dimensione Formato  
DeviceGoalNorm_pre_print.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/344587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact