Traditionally, fuzzy neural networks have parametric clustering methods based on equally spaced membership functions to fuzzify inputs of the model. In this sense, it produces an excessive number calculations for the parameters’ definition of the network architecture, which may be a problem especially for real-time large-scale tasks. Therefore, this paper proposes a new model that uses a non-parametric technique for the fuzzification process. The proposed model uses an autonomous data density approach in a pruned fuzzy neural network, wich favours the compactness of the model. The performance of the proposed approach is evaluated through the usage of databases related to the Optical Interconnection Network. Finally, binary patterns classification tests for the identification of temporal distribution (asynchronous or client–server) were performed and compared with state-of-the-art fuzzy neural-based and traditional machine learning approaches. Results demonstrated that the proposed model is an efficient tool for these challenging classification tasks.

Autonomous Data Density pruning fuzzy neural network for Optical Interconnection Network

de Campos Souza, P. V.;
2021-01-01

Abstract

Traditionally, fuzzy neural networks have parametric clustering methods based on equally spaced membership functions to fuzzify inputs of the model. In this sense, it produces an excessive number calculations for the parameters’ definition of the network architecture, which may be a problem especially for real-time large-scale tasks. Therefore, this paper proposes a new model that uses a non-parametric technique for the fuzzification process. The proposed model uses an autonomous data density approach in a pruned fuzzy neural network, wich favours the compactness of the model. The performance of the proposed approach is evaluated through the usage of databases related to the Optical Interconnection Network. Finally, binary patterns classification tests for the identification of temporal distribution (asynchronous or client–server) were performed and compared with state-of-the-art fuzzy neural-based and traditional machine learning approaches. Results demonstrated that the proposed model is an efficient tool for these challenging classification tasks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/341135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact