The fuzzy neural networks are hybrid structures that can act in several contexts of the pattern classification, including the detection of failures and anomalous behaviors. This paper discusses the use of an artificial intelligence model based on the association between fuzzy logic and training of artificial neural networks to recognize anomalies in transactions involved in the context of computer networks and cyberattacks. In addition to verifying the accuracy of the model, fuzzy rules were obtained through knowledge from the massive datasets to form expert systems. The acquired rules allow the creation of intelligent systems in high-level languages with a robust level of identification of anomalies in Internet transactions, and the accuracy of the results of the test confirms that the fuzzy neural networks can act in anomaly detection in high-security attacks in computer networks.

Detection of Anomalies in Large-Scale Cyberattacks Using Fuzzy Neural Networks

Paulo Vitor de Campos Souza;
2020-01-01

Abstract

The fuzzy neural networks are hybrid structures that can act in several contexts of the pattern classification, including the detection of failures and anomalous behaviors. This paper discusses the use of an artificial intelligence model based on the association between fuzzy logic and training of artificial neural networks to recognize anomalies in transactions involved in the context of computer networks and cyberattacks. In addition to verifying the accuracy of the model, fuzzy rules were obtained through knowledge from the massive datasets to form expert systems. The acquired rules allow the creation of intelligent systems in high-level languages with a robust level of identification of anomalies in Internet transactions, and the accuracy of the results of the test confirms that the fuzzy neural networks can act in anomaly detection in high-security attacks in computer networks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/341048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact