Small-pitch 3D pixel sensors have been developed to equip the innermost layers of the ATLAS and CMS tracker upgrades at the High Luminosity LHC. They feature 50 × 50 and 25 × 100 μm2 geometries and are fabricated on p-type Si-Si Direct Wafer Bonded substrates of 150 μm active thickness with a single-sided process. Due to the short inter-electrode distance, charge trapping effects are strongly mitigated, making these sensors extremely radiation hard. Results from beam test measurements of 3D pixel modules irradiated at large fluences (1016neq/cm2) indeed demonstrated high efficiency at maximum bias voltages of the order of 150 V. However, the downscaled sensor structure also lends itself to high electric fields as the bias voltage is increased, meaning that premature electrical breakdown due to impact ionization is a concern. In this study, TCAD simulations incorporating advanced surface and bulk damage models are used to investigate the leakage current and breakdown behavior of these sensors. Simulations are compared with measured characteristics of 3D diodes irradiated with neutrons at fluences up to 1.5 × 1016neq/cm2. The dependence of the breakdown voltage on geometrical parameters (e.g., the n+ column radius and the gap between the n+ column tip and the highly doped p++ handle wafer) is also discussed for optimization purposes.
TCAD Analysis of Leakage Current and Breakdown Voltage in Small Pitch 3D Pixel Sensors
Boughedda, Abderrezak
;Sultan, D M S
;
2023-01-01
Abstract
Small-pitch 3D pixel sensors have been developed to equip the innermost layers of the ATLAS and CMS tracker upgrades at the High Luminosity LHC. They feature 50 × 50 and 25 × 100 μm2 geometries and are fabricated on p-type Si-Si Direct Wafer Bonded substrates of 150 μm active thickness with a single-sided process. Due to the short inter-electrode distance, charge trapping effects are strongly mitigated, making these sensors extremely radiation hard. Results from beam test measurements of 3D pixel modules irradiated at large fluences (1016neq/cm2) indeed demonstrated high efficiency at maximum bias voltages of the order of 150 V. However, the downscaled sensor structure also lends itself to high electric fields as the bias voltage is increased, meaning that premature electrical breakdown due to impact ionization is a concern. In this study, TCAD simulations incorporating advanced surface and bulk damage models are used to investigate the leakage current and breakdown behavior of these sensors. Simulations are compared with measured characteristics of 3D diodes irradiated with neutrons at fluences up to 1.5 × 1016neq/cm2. The dependence of the breakdown voltage on geometrical parameters (e.g., the n+ column radius and the gap between the n+ column tip and the highly doped p++ handle wafer) is also discussed for optimization purposes.File | Dimensione | Formato | |
---|---|---|---|
sensors-23-04732_2.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.