We provide a contour integral formula for the exact partition function of N = 2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N = 2∗ theory on P2 for all instanton numbers. In the zero mass case, corresponding to the N = 4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a longstanding conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.

Exact results for N = 2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants

Ronzani, Massimiliano;
2016-01-01

Abstract

We provide a contour integral formula for the exact partition function of N = 2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N = 2∗ theory on P2 for all instanton numbers. In the zero mass case, corresponding to the N = 4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a longstanding conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/336748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact