In this paper, speaker adaptive acoustic modeling is investigated by using a novel method for speaker normalization and a well known vocal tract length normalization method. With the novel normalization method, acoustic observations of training and testing speakers are mapped into a normalized acoustic space through speaker-specific transformations with the aim of reducing inter-speaker acoustic variability. For each speaker, an affine transformation is estimated with the goal of reducing the mismatch between the acoustic data of the speaker and a set of target hidden Markov models. This transformation is estimated through constrained maximum likelihood linear regression and then applied to map the acoustic observations of the speaker into the normalized acoustic space. Recognition experiments made use of two corpora, the first one consisting of adults` speech, the second one consisting of children`s speech. Performing training and recognition with normalized data resulted in a consistent reduction of the word error rate with respect to the baseline systems trained on unnormalized data. In addition, the novel method always performed better than the reference vocal tract length normalization method adopted in this work. When unsupervised static speaker adaptation was applied in combination with each of the two speaker normalization methods, a different behavior was observed on the two corpora: in one case performance became very similar while in the other case the difference remained significant.

Improved automatic speech recognition through speaker normalization

Giuliani, Diego;Gerosa, Matteo;Brugnara, Fabio
2006-01-01

Abstract

In this paper, speaker adaptive acoustic modeling is investigated by using a novel method for speaker normalization and a well known vocal tract length normalization method. With the novel normalization method, acoustic observations of training and testing speakers are mapped into a normalized acoustic space through speaker-specific transformations with the aim of reducing inter-speaker acoustic variability. For each speaker, an affine transformation is estimated with the goal of reducing the mismatch between the acoustic data of the speaker and a set of target hidden Markov models. This transformation is estimated through constrained maximum likelihood linear regression and then applied to map the acoustic observations of the speaker into the normalized acoustic space. Recognition experiments made use of two corpora, the first one consisting of adults` speech, the second one consisting of children`s speech. Performing training and recognition with normalized data resulted in a consistent reduction of the word error rate with respect to the baseline systems trained on unnormalized data. In addition, the novel method always performed better than the reference vocal tract length normalization method adopted in this work. When unsupervised static speaker adaptation was applied in combination with each of the two speaker normalization methods, a different behavior was observed on the two corpora: in one case performance became very similar while in the other case the difference remained significant.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/3360
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact