This paper proposes a monostable nonlinear Piezoelectric Energy Harvester (PEH). The harvester is based on an unconventional exsect-tapered fixed-guided spring design, which introduces nonlinearity into the system due to the bending and stretching of the spring. The physical–mathematical model and finite element simulations were performed to analyze the effects of the stretching-induced nonlinearity on the performance of the energy harvester. The proposed exsect-tapered nonlinear PEH shows a bandwidth and power enhancement of 15.38 and 44.4%, respectively, compared to conventional rectangular nonlinear PEHs. It shows a bandwidth and power enhancement of 11.11 and 26.83%, respectively, compared to a simple, linearly tapered and nonlinear PEH. The exsect-tapered nonlinear PEH improves the power output and operational bandwidth for harvesting low-frequency ambient vibrations.
Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications
J. IannacciWriting – Review & Editing
2022-01-01
Abstract
This paper proposes a monostable nonlinear Piezoelectric Energy Harvester (PEH). The harvester is based on an unconventional exsect-tapered fixed-guided spring design, which introduces nonlinearity into the system due to the bending and stretching of the spring. The physical–mathematical model and finite element simulations were performed to analyze the effects of the stretching-induced nonlinearity on the performance of the energy harvester. The proposed exsect-tapered nonlinear PEH shows a bandwidth and power enhancement of 15.38 and 44.4%, respectively, compared to conventional rectangular nonlinear PEHs. It shows a bandwidth and power enhancement of 11.11 and 26.83%, respectively, compared to a simple, linearly tapered and nonlinear PEH. The exsect-tapered nonlinear PEH improves the power output and operational bandwidth for harvesting low-frequency ambient vibrations.File | Dimensione | Formato | |
---|---|---|---|
micromachines-13-01399-v2.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
6 MB
Formato
Adobe PDF
|
6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.