The development of versatile and novel material platforms for integrated photonics is of prime importance in the perspective of future applications of photonic integrated circuits for quantum information and sensing. Here we present a low-loss material platform based on high-refractive index silicon oxynitride (SiON), which offers significant characteristics for linear and non-linear optics applications in a wide range of red/near-infrared wavelengths. The demonstrated propagation loss <1.5 dB/cm for visible wavelengths enables the realization of long and intricate circuitry for photon manipulations, as well as the realization of high quality factor resonators. In addition, the proposed SiON shows a high nonlinear index of 10−19 m2/W, improving the strength of nonlinear effects exploitable for on-chip photon generation schemes.

Silicon oxynitride platform for linear and nonlinear photonics at NIR wavelengths

Piccoli, Gioele
;
Ghulinyan, Mher
2022-01-01

Abstract

The development of versatile and novel material platforms for integrated photonics is of prime importance in the perspective of future applications of photonic integrated circuits for quantum information and sensing. Here we present a low-loss material platform based on high-refractive index silicon oxynitride (SiON), which offers significant characteristics for linear and non-linear optics applications in a wide range of red/near-infrared wavelengths. The demonstrated propagation loss <1.5 dB/cm for visible wavelengths enables the realization of long and intricate circuitry for photon manipulations, as well as the realization of high quality factor resonators. In addition, the proposed SiON shows a high nonlinear index of 10−19 m2/W, improving the strength of nonlinear effects exploitable for on-chip photon generation schemes.
File in questo prodotto:
File Dimensione Formato  
ome-12-9-3551.pdf

accesso aperto

Descrizione: Articolo
Licenza: Copyright dell'editore
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/333568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact