Fast-neutron/gamma-ray pulse-shape discrimination has been performed for the organic liquid scintillators NE 213A and EJ 305 using a time-of-flight based neutron-tagging technique and waveform digitization on an event-by-event basis. Gamma-ray sources and a Geant4-based simulation were used to calibrate the scintillation-light yield. The difference in pulse shape for the neutron and gamma-ray events was analyzed by integrating selected portions of the digitized waveform to produce a figure-of-merit for neutron/gamma-ray separation. This figure-of-merit has been mapped as a function of detector threshold and also of neutron energy determined from time-of-flight. It shows clearly that the well-established pulse-shape discrimination capabilities of NE 213A are superior to those of EJ 305. The extra information provided by the neutron-tagging technique has resulted in a far more detailed assessment of the pulse-shape-discrimination capabilities of these organic scintillators.

Technique for the measurement of intrinsic pulse-shape discrimination for organic scintillators using tagged neutrons

R. Hall-Wilton;
2022

Abstract

Fast-neutron/gamma-ray pulse-shape discrimination has been performed for the organic liquid scintillators NE 213A and EJ 305 using a time-of-flight based neutron-tagging technique and waveform digitization on an event-by-event basis. Gamma-ray sources and a Geant4-based simulation were used to calibrate the scintillation-light yield. The difference in pulse shape for the neutron and gamma-ray events was analyzed by integrating selected portions of the digitized waveform to produce a figure-of-merit for neutron/gamma-ray separation. This figure-of-merit has been mapped as a function of detector threshold and also of neutron energy determined from time-of-flight. It shows clearly that the well-established pulse-shape discrimination capabilities of NE 213A are superior to those of EJ 305. The extra information provided by the neutron-tagging technique has resulted in a far more detailed assessment of the pulse-shape-discrimination capabilities of these organic scintillators.
File in questo prodotto:
File Dimensione Formato  
2206.00948.pdf

solo utenti autorizzati

Descrizione: arXiv pre-print
Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/333432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact