An increasing amount of research focuses on integrating the Internet of Things and blockchain technology to address the requirements of traceability applications for Industry 4.0. However, there has been little quantitative analysis of several aspects of these new blockchain-based traceability systems. For instance, very few works have studied blockchain’s impact on the resources of constrained IoT sensors. Similarly, the infrastructure costs of these blockchain-based systems are not widely understood. This paper characterizes the resources of low-cost IoT sensors and provides a monetary cost model for blockchain infrastructure to support blockchain-based traceability systems. First, we describe and implement a farm-to-fork case study using public and private blockchain networks. Then, we analyze the impact of blockchain in six different resource-limited IoT devices in terms of disk and memory footprint, processing time, and energy consumption. Next, we present an infrastructure cost model and use it to identify the costs for the public and private networks. Finally, we evaluate the traceability of a product in different scenarios. Our results showed that low-cost sensors could directly interact with both types of blockchains with minimal energy overhead. Furthermore, our cost model showed that setting a private blockchain infrastructure costs approximately the same as that managing 50 products on a public blockchain network.

Characterization and Costs of Integrating Blockchain and IoT for Agri-Food Traceability Systems

Miguel Pincheira;Massimo Vecchio
;
Raffaele Giaffreda
2022

Abstract

An increasing amount of research focuses on integrating the Internet of Things and blockchain technology to address the requirements of traceability applications for Industry 4.0. However, there has been little quantitative analysis of several aspects of these new blockchain-based traceability systems. For instance, very few works have studied blockchain’s impact on the resources of constrained IoT sensors. Similarly, the infrastructure costs of these blockchain-based systems are not widely understood. This paper characterizes the resources of low-cost IoT sensors and provides a monetary cost model for blockchain infrastructure to support blockchain-based traceability systems. First, we describe and implement a farm-to-fork case study using public and private blockchain networks. Then, we analyze the impact of blockchain in six different resource-limited IoT devices in terms of disk and memory footprint, processing time, and energy consumption. Next, we present an infrastructure cost model and use it to identify the costs for the public and private networks. Finally, we evaluate the traceability of a product in different scenarios. Our results showed that low-cost sensors could directly interact with both types of blockchains with minimal energy overhead. Furthermore, our cost model showed that setting a private blockchain infrastructure costs approximately the same as that managing 50 products on a public blockchain network.
File in questo prodotto:
File Dimensione Formato  
systems-10-00057 (3).pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/332987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact