Abstract Information exchange in the human brain is crucial for vital tasks and to drive diseases. Neuroimaging techniques allow for the indirect measurement of information flows among brain areas and, consequently, for reconstructing connectomes analyzed through the lens of network science. However, standard analyses usually focus on a small set of network indicators and their joint probability distribution. Here, we propose an information-theoretic approach for the analysis of synthetic brain networks (based on generative models) and empirical brain networks, and to assess connectome’s information capacity at different stages of dementia. Remarkably, our framework accounts for the whole network state, overcoming limitations due to limited sets of descriptors, and is used to probe human connectomes at different scales. We find that the spectral entropy of empirical data lies between two generative models, indicating an interpolation between modular and geometry-driven structural features. In fact, we show that the mesoscale is suitable for characterizing the differences between brain networks and their generative models. Finally, from the analysis of connectomes obtained from healthy and unhealthy subjects, we demonstrate that significant differences between healthy individuals and the ones affected by Alzheimer’s disease arise at the microscale (max. posterior probability smaller than 1%) and at the mesoscale (max. posterior probability smaller than 10%).

Persistence of information flow: A multiscale characterization of human brain

Barbara Benigni;Arsham Ghavasieh;Alessandra Corso;Valeria d'Andrea;Manlio De Domenico
2021

Abstract

Abstract Information exchange in the human brain is crucial for vital tasks and to drive diseases. Neuroimaging techniques allow for the indirect measurement of information flows among brain areas and, consequently, for reconstructing connectomes analyzed through the lens of network science. However, standard analyses usually focus on a small set of network indicators and their joint probability distribution. Here, we propose an information-theoretic approach for the analysis of synthetic brain networks (based on generative models) and empirical brain networks, and to assess connectome’s information capacity at different stages of dementia. Remarkably, our framework accounts for the whole network state, overcoming limitations due to limited sets of descriptors, and is used to probe human connectomes at different scales. We find that the spectral entropy of empirical data lies between two generative models, indicating an interpolation between modular and geometry-driven structural features. In fact, we show that the mesoscale is suitable for characterizing the differences between brain networks and their generative models. Finally, from the analysis of connectomes obtained from healthy and unhealthy subjects, we demonstrate that significant differences between healthy individuals and the ones affected by Alzheimer’s disease arise at the microscale (max. posterior probability smaller than 1%) and at the mesoscale (max. posterior probability smaller than 10%).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/331474
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
social impact