Machine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a relatively new field of inquiry, studies of gender bias in MT still lack cohesion. This advocates for a unified framework to ease future research. To this end, we: i) critically review current conceptualizations of bias in light of theoretical insights from related disciplines, ii) summarize previous analyses aimed at assessing gender bias in MT, iii) discuss the mitigating strategies proposed so far, and iv) point toward potential directions for future work.

Gender bias in machine translation

Savoldi, B.;Gaido, M.;Bentivogli, L.;Negri, M.;Turchi, M.
2021-01-01

Abstract

Machine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a relatively new field of inquiry, studies of gender bias in MT still lack cohesion. This advocates for a unified framework to ease future research. To this end, we: i) critically review current conceptualizations of bias in light of theoretical insights from related disciplines, ii) summarize previous analyses aimed at assessing gender bias in MT, iii) discuss the mitigating strategies proposed so far, and iv) point toward potential directions for future work.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/330772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact