In this article, CFD simulations results are presented as a key tool to the comprehension of the target gas concentration evolution in a test chamber, at different working conditions. The simulation results are compared with the experimental data, which shows a qualitative good correlation with the evolution of the concentration gradient detected. The experiments were carried out using an aluminum gas test chamber, where a WO3 based conductometric sensor is introduced. The results demonstrate how the response time is dependent on the sensor working conditions. Analyzing the CFD and experimental results, some assumptions for this behavior are proposed. The WO3 sensor needs a Pt heating element, which is heated up to 300°C. As the response is highly temperature-dependent, the temperature distribution on the sensor surface was measured by an IR thermographic camera. The simulation results show that the temperature distribution matches with those obtained experimentally. To validate the model, a mesh and time step convergence study was also implemented.

Influence of the test-chamber shape on the performance of conductometric gas sensors

L. Parellada Monreal;
2022-01-01

Abstract

In this article, CFD simulations results are presented as a key tool to the comprehension of the target gas concentration evolution in a test chamber, at different working conditions. The simulation results are compared with the experimental data, which shows a qualitative good correlation with the evolution of the concentration gradient detected. The experiments were carried out using an aluminum gas test chamber, where a WO3 based conductometric sensor is introduced. The results demonstrate how the response time is dependent on the sensor working conditions. Analyzing the CFD and experimental results, some assumptions for this behavior are proposed. The WO3 sensor needs a Pt heating element, which is heated up to 300°C. As the response is highly temperature-dependent, the temperature distribution on the sensor surface was measured by an IR thermographic camera. The simulation results show that the temperature distribution matches with those obtained experimentally. To validate the model, a mesh and time step convergence study was also implemented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/330758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact