We present a novel method for extracting the proton radius from elastic electron-proton (ep) scattering data. The approach is based on interpolation via continued fractions augmented by statistical sampling and avoids any assumptions on the form of function used for the representation of data and subsequent extrapolation onto Q^{2}≃0. Applying the method to extant modern ep datasets, we find that all results are mutually consistent and, combining them, we arrive at r_{p}=0.847(8) fm. This result compares favorably with values obtained from contemporary measurements of the Lamb shift in muonic hydrogen, transitions in electronic hydrogen, and muonic deuterium spectroscopy.
Fresh Extraction of the Proton Charge Radius from Electron Scattering
Daniele Binosi;
2021-01-01
Abstract
We present a novel method for extracting the proton radius from elastic electron-proton (ep) scattering data. The approach is based on interpolation via continued fractions augmented by statistical sampling and avoids any assumptions on the form of function used for the representation of data and subsequent extrapolation onto Q^{2}≃0. Applying the method to extant modern ep datasets, we find that all results are mutually consistent and, combining them, we arrive at r_{p}=0.847(8) fm. This result compares favorably with values obtained from contemporary measurements of the Lamb shift in muonic hydrogen, transitions in electronic hydrogen, and muonic deuterium spectroscopy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.