Solid estimates describing the clinical course of SARS-CoV-2 infections are still lacking due to under-ascertainment of asymptomatic and mild-disease cases. In this work, we quantify age-specific probabilities of transitions between stages defining the natural history of SARS-CoV-2 infection from 1965 SARS-CoV-2 positive individuals identified in Italy between March and April 2020 among contacts of confirmed cases. Infected contacts of cases were confirmed via RT-PCR tests as part of contact tracing activities or retrospectively via IgG serological tests and followed-up for symptoms and clinical outcomes. In addition, we provide estimates of time intervals between key events defining the clinical progression of cases as obtained from a larger sample, consisting of 95,371 infections ascertained between February and July 2020. We found that being older than 60 years of age was associated with a 39.9% (95%CI: 36.2–43.6%) likelihood of developing respiratory symptoms or fever ≥ 37.5 °C after SARS-CoV-2 infection; the 22.3% (95%CI: 19.3–25.6%) of the infections in this age group required hospital care and the 1% (95%CI: 0.4–2.1%) were admitted to an intensive care unit (ICU). The corresponding proportions in individuals younger than 60 years were estimated at 27.9% (95%CI: 25.4–30.4%), 8.8% (95%CI: 7.3–10.5%) and 0.4% (95%CI: 0.1–0.9%), respectively. The infection fatality ratio (IFR) ranged from 0.2% (95%CI: 0.0–0.6%) in individuals younger than 60 years to 12.3% (95%CI: 6.9–19.7%) for those aged 80 years or more; the case fatality ratio (CFR) in these two age classes was 0.6% (95%CI: 0.1–2%) and 19.2% (95%CI: 10.9–30.1%), respectively. The median length of stay in hospital was 10 (IQR: 3–21) days; the length of stay in ICU was 11 (IQR: 6–19) days. The obtained estimates provide insights into the epidemiology of COVID-19 and could be instrumental to refine mathematical modeling work supporting public health decisions.

A quantitative assessment of epidemiological parameters required to investigate COVID-19 burden

Zardini, Agnese;Galli, Margherita;Manica, Mattia;Trentini, Filippo;Guzzetta, Giorgio;Marziano, Valentina;Poletti, Piero;Merler, Stefano
2021-01-01

Abstract

Solid estimates describing the clinical course of SARS-CoV-2 infections are still lacking due to under-ascertainment of asymptomatic and mild-disease cases. In this work, we quantify age-specific probabilities of transitions between stages defining the natural history of SARS-CoV-2 infection from 1965 SARS-CoV-2 positive individuals identified in Italy between March and April 2020 among contacts of confirmed cases. Infected contacts of cases were confirmed via RT-PCR tests as part of contact tracing activities or retrospectively via IgG serological tests and followed-up for symptoms and clinical outcomes. In addition, we provide estimates of time intervals between key events defining the clinical progression of cases as obtained from a larger sample, consisting of 95,371 infections ascertained between February and July 2020. We found that being older than 60 years of age was associated with a 39.9% (95%CI: 36.2–43.6%) likelihood of developing respiratory symptoms or fever ≥ 37.5 °C after SARS-CoV-2 infection; the 22.3% (95%CI: 19.3–25.6%) of the infections in this age group required hospital care and the 1% (95%CI: 0.4–2.1%) were admitted to an intensive care unit (ICU). The corresponding proportions in individuals younger than 60 years were estimated at 27.9% (95%CI: 25.4–30.4%), 8.8% (95%CI: 7.3–10.5%) and 0.4% (95%CI: 0.1–0.9%), respectively. The infection fatality ratio (IFR) ranged from 0.2% (95%CI: 0.0–0.6%) in individuals younger than 60 years to 12.3% (95%CI: 6.9–19.7%) for those aged 80 years or more; the case fatality ratio (CFR) in these two age classes was 0.6% (95%CI: 0.1–2%) and 19.2% (95%CI: 10.9–30.1%), respectively. The median length of stay in hospital was 10 (IQR: 3–21) days; the length of stay in ICU was 11 (IQR: 6–19) days. The obtained estimates provide insights into the epidemiology of COVID-19 and could be instrumental to refine mathematical modeling work supporting public health decisions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/329026
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact