We report on the preparation and performance enhancement of n-type low-voltage organic field effect transistors (FETs) based on cross-linked poly(vinyl alcohol) (cr-PVA) as gate dielectric and C60 fullerene as channel semiconductor. Transistors were prepared using bottom-gate top-contact geometry and exhibited field-effect mobility (µFET) of 0.18 cm2V-1s-1. Treatment of the gate dielectric surface with an anionic surfactant, sodium dodecyl sulfate (SDS), passivates the positively charged defects present on the surface of cr-PVA, hence resulting in overall transistor performance improvement with an increase in µFET to 1.05 cm2V-1s-1 and additional significant improvements in dielectric capacitance, transistor on/off current ratio and transconductance.
Poly(Vinyl Alcohol) Gate Dielectric Treated With Anionic Surfactant in C60 Fullerene-Based n-Channel Organic Field Effect Transistors
Nawaz, Ali;
2016-01-01
Abstract
We report on the preparation and performance enhancement of n-type low-voltage organic field effect transistors (FETs) based on cross-linked poly(vinyl alcohol) (cr-PVA) as gate dielectric and C60 fullerene as channel semiconductor. Transistors were prepared using bottom-gate top-contact geometry and exhibited field-effect mobility (µFET) of 0.18 cm2V-1s-1. Treatment of the gate dielectric surface with an anionic surfactant, sodium dodecyl sulfate (SDS), passivates the positively charged defects present on the surface of cr-PVA, hence resulting in overall transistor performance improvement with an increase in µFET to 1.05 cm2V-1s-1 and additional significant improvements in dielectric capacitance, transistor on/off current ratio and transconductance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.