Audio-visual tracking of an unknown number of concurrent speakers in 3D is a challenging task, especially when sound and video are collected with a compact sensing platform. In this paper, we propose a tracker that builds on generative and discriminative audio-visual likelihood models formulated in a particle filtering framework. We localize multiple concurrent speakers with a de-emphasized acoustic map assisted by the image detection-derived 3D video observations. The 3D multi-modal observations are either assigned to existing tracks for discriminative likelihood computation or used to initialize new tracks. The generative likelihoods rely on color distribution of the target and the de-emphasized acoustic map value. Experiments on AV16.3 and CAV3D datasets show that the proposed tracker outperforms the uni-modal trackers and the state-of-the-art approaches both in 3D and on the image plane.

Audio-visual tracking of concurrent speakers

Qian, Xinyuan;Brutti, Alessio;Lanz, Oswald;Omologo, Maurizio;
2021-01-01

Abstract

Audio-visual tracking of an unknown number of concurrent speakers in 3D is a challenging task, especially when sound and video are collected with a compact sensing platform. In this paper, we propose a tracker that builds on generative and discriminative audio-visual likelihood models formulated in a particle filtering framework. We localize multiple concurrent speakers with a de-emphasized acoustic map assisted by the image detection-derived 3D video observations. The 3D multi-modal observations are either assigned to existing tracks for discriminative likelihood computation or used to initialize new tracks. The generative likelihoods rely on color distribution of the target and the de-emphasized acoustic map value. Experiments on AV16.3 and CAV3D datasets show that the proposed tracker outperforms the uni-modal trackers and the state-of-the-art approaches both in 3D and on the image plane.
File in questo prodotto:
File Dimensione Formato  
TMM2__Audio_visual_Tracking_of_Concurrent_Speakers.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/324859
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact