Single-photon avalanche diode arrays can provide both the spatial and temporal information of each detected photon. We present here the characterization of spatially entangled photons with a 32 × 32 pixel sensor, specifically designed for quantum imaging applications. The sensor is time-tagging each detection event at pixel level with sub-nanosecond accuracy within frames of 50 ns. The spatial correlations between any number of detections in a defined temporal window can thus be directly extracted from the data.The space-momentum entanglement of photon pairs is demonstrated by violating an EPR-type inequality directly from the measured near-field correlations and far-field anti-correlations.
Characterization of space-momentum entangled photons with a time resolving CMOS SPAD array
Gasparini, Leonardo;Perenzoni, Matteo;
2020-01-01
Abstract
Single-photon avalanche diode arrays can provide both the spatial and temporal information of each detected photon. We present here the characterization of spatially entangled photons with a 32 × 32 pixel sensor, specifically designed for quantum imaging applications. The sensor is time-tagging each detection event at pixel level with sub-nanosecond accuracy within frames of 50 ns. The spatial correlations between any number of detections in a defined temporal window can thus be directly extracted from the data.The space-momentum entanglement of photon pairs is demonstrated by violating an EPR-type inequality directly from the measured near-field correlations and far-field anti-correlations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.