This article reports the design and characterization of a 32 × 32 single-photon avalanche diode (SPAD) time-resolved image sensor for quantum imaging applications fabricated in a 150-nm CMOS standard technology. A per-SPAD time-to-digital converter (TDC) records the spatial cross correlation functions of a flux of entangled photons. Each 44.64- μm pixel with 19.48% fill-factor features a 210.2-ps resolution, 50-ns (8-bit) range TDC with 1.28-LSB differential and 1.92-LSB integral nonlinearity (DNL/INL). The sensor achieves an observation rate of up to 1 MHz through a current-based mechanism that avoids reading empty frames when the photon rates are low. A row-skipping mechanism detects the absence of SPAD activity in a row to increase the duty cycle. These two features require only three transistors in each pixel. The sensor functionality is demonstrated in a quantum imaging experiment that achieves super-resolution.
A 32x 32-Pixel CMOS Imager for Quantum Optics With Per-SPAD TDC, 19.48% Fill-Factor in a 44.64-μm Pitch Reaching 1-MHz Observation Rate
Majid Zarghami
;Leonardo Gasparini;Luca Parmesan;Manuel Moreno-Garcia;Matteo Perenzoni
2020-01-01
Abstract
This article reports the design and characterization of a 32 × 32 single-photon avalanche diode (SPAD) time-resolved image sensor for quantum imaging applications fabricated in a 150-nm CMOS standard technology. A per-SPAD time-to-digital converter (TDC) records the spatial cross correlation functions of a flux of entangled photons. Each 44.64- μm pixel with 19.48% fill-factor features a 210.2-ps resolution, 50-ns (8-bit) range TDC with 1.28-LSB differential and 1.92-LSB integral nonlinearity (DNL/INL). The sensor achieves an observation rate of up to 1 MHz through a current-based mechanism that avoids reading empty frames when the photon rates are low. A row-skipping mechanism detects the absence of SPAD activity in a row to increase the duty cycle. These two features require only three transistors in each pixel. The sensor functionality is demonstrated in a quantum imaging experiment that achieves super-resolution.File | Dimensione | Formato | |
---|---|---|---|
10.1109-JSSC.2020.3005756 .pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.