We present a modelling framework for predicting forest areas. The framework is obtained by integrating a machine learning software suite within the GRASS Geographical Information System (GIS) and by providing additional methods for predictive habitat modelling. Three machine learning techniques (Tree-Based Classification, Neural Networks and Random Forest) are available in parallel for modelling from climatic and topographic variables. Model evaluation and parameter selection are measured by sensitivity-specificity ROC analysis, while the final presence and absence maps are obtained through maximisation of the kappa statistic. The modelling framework is applied at a resolution of 1 km with Iberian subpopulations of Pinus sylvestris L. forests. For this data set, the most accurate algorithm is Breiman`s random forest, an ensemble method which provides automatic combination of tree-classifiers trained on bootstrapped subsamples and randomised variable sets. All models show a potential area of P. sylvestris for the Iberian Peninsula which is larger than the present one, a result corroborated by regional pollen analyses.

Predicting habitat suitability with Machine Learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula

Blazek, Radim;Neteler, Markus;Furlanello, Cesare
2006-01-01

Abstract

We present a modelling framework for predicting forest areas. The framework is obtained by integrating a machine learning software suite within the GRASS Geographical Information System (GIS) and by providing additional methods for predictive habitat modelling. Three machine learning techniques (Tree-Based Classification, Neural Networks and Random Forest) are available in parallel for modelling from climatic and topographic variables. Model evaluation and parameter selection are measured by sensitivity-specificity ROC analysis, while the final presence and absence maps are obtained through maximisation of the kappa statistic. The modelling framework is applied at a resolution of 1 km with Iberian subpopulations of Pinus sylvestris L. forests. For this data set, the most accurate algorithm is Breiman`s random forest, an ensemble method which provides automatic combination of tree-classifiers trained on bootstrapped subsamples and randomised variable sets. All models show a potential area of P. sylvestris for the Iberian Peninsula which is larger than the present one, a result corroborated by regional pollen analyses.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/3229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact